欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1666-1679.doi: 10.3724/SP.J.1006.2021.04186

• 研究论文 • 上一篇    下一篇

钙与氮肥互作对花生干物质和氮素积累分配及产量的影响

王建国1,2,4(), 张佳蕾1,2, 郭峰1,2, 唐朝辉1,2, 杨莎1,2, 彭振英1,2, 孟静静1,2, 崔利3, 李新国1,2,4,*(), 万书波1,2,4,*()   

  1. 1山东省农业科学院生物技术研究中心, 山东济南 250100
    2山东省作物遗传改良与生态生理重点实验室, 山东济南 250100
    3山东省农作物种质资源中心, 山东济南 250100
    4农业农村部华东地区作物栽培科学观测实验站, 山东东营 257000
  • 收稿日期:2020-08-12 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-22
  • 通讯作者: 李新国,万书波
  • 作者简介:王建国, E-mail: shanshanyilang@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000906);山东省重大科技创新工程(2018YFJH0601);山东省重大科技创新工程(2019JZZY010702);山东省农业科学院农业科技创新工程(CXGC2018D04);山东省农业科学院农业科技创新工程(CXGC2018E13)

Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut

WANG Jian-Guo1,2,4(), ZHANG Jia-Lei1,2, GUO Feng1,2, TANG Zhao-Hui1,2, YANG Sha1,2, PENG Zhen-Ying1,2, MENG Jing-Jing1,2, CUI Li3, LI Xin-Guo1,2,4,*(), WAN Shu-Bo1,2,4,*()   

  1. 1Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    2Key Laboratory of Crop Genetic Improvement and Ecological Physiology of Shandong Provinces, Jinan 250100, Shandong, China
    3Shandong Center of Crop Germplasm Resources, Jinan 250100, Shandong, China
    4Scientific Observation and Experiment Station of Crop Cultivation in East China, Ministry of Agriculture and Rural Affairs, Dongying 257000, Shandong, China
  • Received:2020-08-12 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-22
  • Contact: LI Xin-Guo,WAN Shu-Bo
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000906);Major Scientific and Technological Innovation Projects in Shandong Province(2018YFJH0601);Major Scientific and Technological Innovation Projects in Shandong Province(2019JZZY010702);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018D04);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018E13)

摘要:

为探讨钙肥和氮肥施用量对花生干物质和氮素积累分配及产量的影响, 本研究以花育25为试验材料, 设置0和600 kg hm-2 (Ca0、Ca600) 2个钙肥水平, 0、75、150、225、300 kg hm-2 (N0、N75、N150、N225、N300) 5个氮肥水平, 研究不同试验样地增钙减氮对花生干物质积累和氮素积累与分配、产量及其构成因素的影响。结果表明, 与Ca 0相比, Ca600条件下花生干物质积累量显著升高, 济阳(JY)和饮马泉(YMQ)分别提高了13.5%和12.6%。与N0相比, 济阳(JY)各施氮处理花生植株干物质积累量分别提高了12.8%、17.7%、26.3%和21.0%, 饮马泉(YMQ)分别提高了16.7%、28.4%、24.9%和22.9%。花生干物质和氮素吸收积累动态曲线均符合Logistic模型, 济阳和饮马泉花生植株氮素最大累积量(Ym)分别在Ca600N225、Ca600N150处理下获得, 与平均值相比, 花生植株氮素最大累积速率(Vm)分别提高了12.4%和10.6%, 最大累积量分别提高了14.9%和13.7%, 快速累积持续时间(T)分别延长了2.3%和3.1%; 氮素快速积累期起始时期(t1)比干物质积累分别提早了7.5 d和9.4 d。济阳Ca600N225和饮马泉Ca600N150、Ca600N225处理花生荚果产量显著高于其他处理。钙氮互作效应对花生产量的影响显著。钙肥增施是提高氮肥利用效率, 增加花生结果数和百果重、促进稳产高产的重要途径。本试验区域减肥稳产增效栽培中最优施肥方案可采用钙肥600 kg hm-2 + 氮肥75 kg hm-2; 高产高效栽培中最优施肥方案可采用钙肥600 kg hm-2 + 氮肥150~225 kg hm-2

关键词: 花生, 氮肥, 钙肥, 干物质, 氮素积累, 产量

Abstract:

The purpose of this study was to investigate the effects of calcium and nitrogen fertilizer on dry matter, nitrogen accumulation and distribution, and yield in peanut. A field experiment was conducted using Huayu 25 with two calcium (Ca) rates (0 and 600 kg hm-2), and five nitrogen (N) rates (0, 75, 150, 225, and 300 kg hm-2) in Jiyang (JY) and Yinmaquan (YMQ) in 2019. The results showed that compared with Ca0, the dry matter accumulation of peanuts under Ca600 treatment was significantly increased by 13.5% in the Jiyang, by 12.6% in Yinmaquant. Compared with N0, nitrogen fertilizer significantly promoted the accumulation of dry matter in peanut, and the N75, N150, N225, N300 treatments increased dry matter accumulation by 12.8%, 17.7%, 26.3%, 21.0% in Jiyang and 16.7%, 28.4%, 24.9%, 22.9% in Yinmaquan, respectively. The dynamic curve of peanut dry matter and nitrogen absorption accumulation conformed to the Logistic model, and the maximal nitrogen accumulation (Ym) was obtained under Ca600N225treatment in Jiyang and Ca600N150 treatment Yinmaquan. Compared to the average, the maximal speed of accumulation (Vm), the maximal biomass, duration of rapid accumulation (T), were increased at two plots by 12.4% and 10.6%, 14.9% and 13.7%, 2.3% and 3.1%, respectively. The starting date of rapid accumulation period (t1) was 7.5 days and 9.4 days earlier for nitrogen than for dry matter, indicated that the nutrient absorption of peanut was the premise of dry matter accumulation. The pod yield of peanut of Ca600N225 in Jiyang and Ca600N150 and Ca600N225 in Yinmaquan was higher than other treatments. Effects of interaction between calcium rates and nitrogen rates had a significant impact on peanut yield. Increasing calcium fertilizer application was an important way to improve nitrogen use efficiency, which increased pod number and 100-pod weight and promoted stably high yield in peanut. In this study, calcium fertilizer (600 kg hm-2) and nitrogen fertilizer (75 kg hm-2) were applied as the optimal fertilization scheme in the cultivation of less-fertilizer, stable-yield, and improved-efficiency treatment, while calcium fertilizer (600 kg hm-2) and nitrogen fertilizer (150-225 kg hm-2) as high-yield and high-efficiency treatment.

Key words: peanut, nitrogen fertilizer, calcium fertilizer, dry matter, nitrogen accumulation, yield

表1

不同施钙量和施氮量花生干物质累积动态特征值"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ca0 13,750 272.6 62.5 45.9 79.1 33.2 14,824 282.4 60.5 43.2 77.8 34.6
Ca600 15,604 312.1 62.6 46.1 79.1 32.9 16,728 307.8 60.5 42.6 78.4 35.8
N0 12,676 267.8 61.9 46.3 77.5 31.2 13,250 261.7 58.3 41.6 75.0 33.3
N75 14,313 291.6 62.3 46.1 78.4 32.3 15,518 290.6 60.5 43.0 78.1 35.2
N150 14,954 296.1 62.4 45.7 79.0 33.3 17,106 314.3 61.0 43.1 78.9 35.8
N225 16,063 308.8 63.0 45.8 80.1 34.3 16,646 305.8 61.2 43.3 79.1 35.8
N300 15,388 298.9 62.8 45.8 79.7 33.9 16,367 304.8 60.9 43.2 78.6 35.4
Ca0×N0 11,732 250.8 61.6 46.2 77.0 30.8 11,844 250.8 55.8 40.2 71.3 31.1
Ca0×N75 13,257 271.4 62.0 45.9 78.1 32.2 14,326 277.2 59.8 42.7 76.8 34.0
Ca0×N150 13,923 278.1 62.1 45.6 78.5 33.0 16,262 301.3 61.6 43.8 79.4 35.5
Ca0×N225 15,266 288.9 63.4 46.0 80.8 34.8 16,045 296.0 62.3 44.4 80.1 35.7
Ca0×N300 14,582 277.4 63.1 45.8 80.4 34.6 15,663 294.5 61.6 44.1 79.1 35.0
Ca600×N0 13,620 285.3 62.2 46.5 77.9 31.4 14,665 276.1 60.1 42.6 77.6 35.0
Ca600×N75 15,369 312.0 63.2 47.0 79.4 32.4 16,716 304.7 61.2 43.1 79.2 36.1
Ca600×N150 15,988 314.5 62.6 45.9 79.3 33.5 17,949 327.6 60.5 42.4 78.5 36.1
Ca600×N225 16,860 329.2 62.5 45.7 79.4 33.7 17,243 316.4 60.1 42.2 78.0 35.9
Ca600×N300 16,194 320.6 62.5 45.9 79.2 33.3 17,073 316.3 60.1 42.4 77.9 35.5
平均Average 14,679 292.8 62.5 46.0 79.0 33.0 15,779 296.1 60.3 42.8 77.8 35.0

图1

不同施钙量和施氮量的花生干物质累积动态 JY: 济阳; YMQ: 饮马泉。处理同表1。3次重复。 "

表2

不同施钙量和施氮量花生氮素累积动态特征值"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
Ym
(kg hm-2)
Vm
(kg hm-2 d-1)
tm
(d)
t1
(d)
t2
(d)
T
(d)
施钙量 Ca rate (kg hm-2)
Ca0 268 5.7 53.8 38.3 69.3 31.0 264 5.7 49.3 34.1 64.5 30.4
Ca600 313 7.2 52.9 38.7 67.2 28.5 306 6.6 48.2 33.0 63.3 30.3
施氮量 N rate (kg hm-2)
N0 225 5.5 52.2 38.8 65.5 26.7 225 5.5 45.8 32.3 59.2 26.9
N75 280 6.4 53.1 38.7 67.6 28.9 275 6.3 47.4 33.1 61.7 28.6
N150 302 6.7 53.3 38.5 68.1 29.6 318 6.6 50.0 34.2 65.8 31.6
N225 334 7.0 54.0 38.2 69.8 31.7 309 6.4 49.7 33.9 65.5 31.5
N300 311 6.7 53.6 38.3 68.8 30.5 297 6.2 49.4 33.7 65.1 31.4
施钙量×施氮量 Ca rate × N rate
Ca0×N0 204 5.1 52.4 39.1 65.7 26.6 205 5.0 46.3 32.7 59.9 27.1
Ca0×N75 256 5.7 53.1 38.3 67.9 29.6 252 6.0 47.1 33.2 61.1 27.9
Ca0×N150 276 5.9 53.5 38.1 69.0 30.8 295 6.2 50.0 34.4 65.6 31.2
Ca0×N225 314 6.1 54.6 37.6 71.6 33.9 290 5.9 51.0 34.8 67.1 32.3
Ca0×N300 292 5.9 54.4 38.1 70.7 32.6 276 5.9 50.1 34.6 65.6 31.0
Ca600×N0 245 6.0 52.0 38.7 65.4 26.7 244 6.0 45.3 32.0 58.6 26.6
Ca600×N75 305 7.1 53.1 39.0 67.3 28.2 298 6.7 47.5 32.9 62.0 29.1
Ca600×N150 329 7.5 53.2 38.7 67.6 28.9 342 7.1 49.5 33.8 65.3 31.5
Ca600×N225 355 7.9 53.5 38.7 68.3 29.6 327 7.0 48.6 33.3 64.0 30.8
Ca600×N300 330 7.7 52.4 38.3 66.5 28.2 319 6.9 47.2 32.0 62.3 30.3
平均Average 291 6.5 53.2 38.5 68.0 29.5 285 6.3 48.3 33.4 63.2 29.8

图2

不同施钙量和施氮量花生氮素累积动态 JY: 济阳; YMQ: 饮马泉。处理同表1。3次重复。 "

表3

不同施钙量和施氮量对花生干物质分配的影响"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
施钙量 Ca rate (kg hm-2)
Ca0 8065 b 59.2 5593 b 40.8 8054 b 55.0 6622 b 45.0
Ca600 8709 a 56.3 6806 a 43.7 8502 a 51.6 7992 a 48.4
施氮量 N rate (kg hm-2)
N0 7603 c 60.4 5013 d 39.6 7282 c 55.5 5869 d 44.5
N75 8329 b 58.6 5897 c 41.4 8110 b 53.0 7240 c 47.0
N150 8443 b 56.8 6445 b 43.2 8597 a 51.0 8287 a 49.0
N225 8843 a 55.6 7090 a 44.4 8737 a 53.2 7712 b 46.8
N300 8718 a 57.2 6551 b 42.8 8665 a 53.9 7429 c 46.1
施钙量×施氮量 Ca rate × N rate
Ca0×N0 7170 e 61.4 4503 g 38.6 6717 e 57.0 5067 h 43.0
Ca0×N75 7876 d 59.8 5302 f 40.2 7766 d 54.7 6437 g 45.3
Ca0×N150 8077 d 58.4 5763 d 41.6 8418 c 52.4 7647 d 47.6
Ca0×N225 8683 bc 57.4 6450 c 42.6 8743 a 55.2 7101 f 44.8
Ca0×N300 8515 c 58.9 5948 d 41.1 8627 bc 55.7 6858 ef 44.3
Ca600×N0 8036 d 59.3 5523 e 40.7 7848 d 54.1 6668 fg 45.9
Ca600×N75 8780 ab 57.5 6493 c 42.5 8455 bc 51.2 8043 c 48.8
Ca600×N150 8809 ab 55.3 7127 b 44.7 8775 a 49.6 8927 a 50.4
Ca600×N225 9002 a 53.8 7730 a 46.2 8732 a 51.2 8323 b 48.8
Ca600×N300 8920 ab 55.5 7155 b 44.5 8702 ab 52.1 7999 c 47.9
变异来源 Source of variation
施钙量 Calcium (Ca) ** ** ** **
施氮量 Nitrogen (N) ** ** ** **
施钙量×施氮量 Ca×N ns ns ** ns

表4

不同施钙量和施氮量对花生氮素分配的影响"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
施钙量 Ca rate (kg hm-2)
Ca0 96.8 36.3 170.9 b 63.7 98.8 b 37.7 164.2 b 62.3
Ca600 100.7 a 32.4 211.6 a 67.6 104.3 a 34.3 201.2 a 65.7
施氮量 N rate (kg hm-2)
N0 81.5 e 36.5 143.1 d 63.5 86.5 c 38.7 137.9 e 61.3
N75 96.9 d 34.8 182.9 c 65.2 98.8 b 36.1 175.7 d 63.9
N150 100.9 c 33.6 201.0 b 66.4 107.0 a 33.8 210.6 a 66.2
处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
营养器官
VO
(kg hm-2)
营养器官
VO
(%)
生殖器官
GO
(kg hm-2)
生殖器官
GO
(%)
N225 108.4 a 32.6 225.2 a 67.4 108.0 a 35.2 199.8 b 64.8
N300 106.0 b 34.3 204.3 b 65.7 107.2 a 36.3 189.4 c 63.7
施钙量×施氮量 Ca rate × N rate
Ca0×N0 78.0 g 38.2 126.2 g 61.8 82.2 d 40.1 122.6 h 59.9
Ca0×N75 94.1 e 36.9 161.0 f 63.1 95.1 c 37.7 156.8 g 62.3
Ca0×N150 98.7 d 35.9 176.6 e 64.1 104.9 ab 35.7 189.0 de 64.3
Ca0×N225 108.0 a 34.5 204.8 c 65.5 106.5 ab 36.9 182.4 e 63.1
Ca0×N300 105.2 ab 36.1 186.1 d 63.9 105.2 ab 38.2 170.0 f 61.8
Ca600×N0 85.0 f 34.7 160.0 f 65.3 90.9 c 37.3 153.2 g 62.7
Ca600×N75 99.6 cd 32.7 204.7 c 67.3 102.6 b 34.5 194.6 d 65.5
Ca600×N150 103.1 bc 31.4 225.3 b 68.6 109.2 a 32.0 232.3 a 68.0
Ca600×N225 108.7 a 30.7 245.5 a 69.3 109.5 a 33.5 217.2 b 66.5
Ca600×N300 106.9 ab 32.4 222.6 b 67.6 109.1 a 34.3 208.9 c 65.7
变异来源Source of variation
施钙量 Calcium (Ca) ** ** ** **
施氮量 Nitrogen (N) ** ** ** **
施钙量×施氮量 Ca×N ns ns ns ns

表5

不同施钙量和施氮量对花生产量和产量构成的影响"

处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
钙量 Ca rate (kg hm-2)
Ca0 5034 b 330 b 229.0 b 94.6 b 70.6 a 5551 b 345 b 236.3 b 97.3 a 70.3 a
Ca600 5824 a 351 a 236.1 a 95.9 a 70.7 a 62,942 a 366 a 242.7 a 98.8 a 70.5 a
施氮量 N rate (kg hm-2)
N0 4401 d 312 d 218.1 d 92.7 d 70.0 a 5073 d 330 d 225.1 c 95.5 c 69.8 b
N75 5053 c 329 c 230.5 c 95.2 c 70.5 a 5648 c 344 c 238.9 b 98.0 b 70.3 ab
N150 5712 b 347 b 237.0 bc 96.1 c 70.8 a 6486 a 375 a 249.7 a 100.3 a 70.8 a
N225 6172 a 356 a 242.4 b 97.4 b 71.0 a 6348 a 367 b 244.3 ab 99.0 ab 70.6 a
N300 5805 b 352 a 234.8 a 94.8 a 70.8 a 6057 b 363 b 239.6 b 97.5 b 70.5 a
施钙量×施氮量 Ca rate × N rate
Ca0×N0 3903 g 299 f 210.8 f 92.3 d 69.8 c 4686 f 320 f 219.2 e 95.0 c 69.7 c
Ca0×N75 4500 f 313 e 228.3 de 94.4 c 70.6 ab 5219 e 331 e 235.4 c 97.2 b 70.0 bc
Ca0×N150 5379 d 336 c 233.6 cd 95.2 b 70.7 ab 6102 c 361 c 248.7 a 99.7 b 70.7 ab
Ca0×N225 5876 c 347 bc 239.4 bc 96.8 a 71.0 a 6044 c 359 c 241.5 b 98.1 b 70.6 ab
处理
Treatment
济阳Jiyang (JY) 饮马泉Yinmaquan (YMQ)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
荚果产量
Pod yield
(kg hm-2)
总果数
Total pods
(×104 pods hm-2)
百果重
100-pod
weight (g)
百仁重
100-kernel
weight (g)
出仁率
Kernel rate
(%)
Ca0×N300 5510 cd 343 c 232.9 cd 94.3 c 70.7 ab 5703 d 355 c 236.8 c 96.7 bc 70.3 abc
Ca600×N0 4900 e 324 d 225.3 e 93.1 d 70.2 bc 5459 e 340 d 231.0 d 95.9 c 69.8 c
Ca600×N75 5606 c 345 c 232.7 cd 96.0 ab 70.5 ab 6078 c 357 c 242.4 b 98.9 ab 70.7 ab
Ca600×N150 6046 b 358 ab 240.3 ab 97.0 a 70.9 ab 6871 a 388 a 250.7 a 100.9 a 70.9 ab
Ca600×N225 6467 a 366 a 245.4 a 98.0 a 71.1 a 6651 a 374 b 247.1 a 99.9 ab 70.7 a
Ca600×N300 6099 b 360 a 236.7 bc 95.4 b 70.9 ab 6412 b 370 b 242.4 b 98.3 b 70.6 ab
变异来源Source of variation
施钙量 Calcium (Ca) ** ** ** * ns ** ** ** * ns
施氮量 Nitrogen (N) ** ** ** ** ** ** ** ** ** **

图3

钙肥与氮肥互作对花生荚果产量的影响 **表示在0.01水平上显著相关。30个重复。 "

[1] Zhuang W J, Chen H, Yang M, Wang J P, Pandey M K, Zhang C, Chang W C, Zhang L S, Zhang X T, Tang R H, Garg V, Wang X J, Tang H B, Chow C N, Wang J P, Deng Y, Wang D P, Khan A W, Yang Q, Cai T C, Bajaj P, Wu K C, Guo B Z, Zhang X Y, Li J J, Liang F, Hu J, Liao B S, Liu S Y, Chitikineni A, Yan H S, Zheng Y X, Shan S H, Liu Q Z, Xie D Y, Wang Z Y, Khan S A, Ali N, Zhao C Z, Li X G, Luo Z L, Zhang S B, Zhuang R R, Peng Z, Wang S Y, Mamadou G, Zhuang Y H, Zhao Z Y, Yu W C, Xiong F Q, Quan W P, Yuan M, Li Y, Zuo H S, Xia H, Zha L, Fan J P, Yu J G, Xie W P, Yuan J Q, Chen K, Zhao S S, Chu W T, Chen Y T, Sun P C, Meng F B, Zhuo T, Zhao Y H, Li C J, He G H, Zhao Y L, Wang C C, Kavikishor P B, Pan R L, Paterson A H, Wang X Y, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019, 51:865-876.
doi: 10.1038/s41588-019-0402-2
[2] 房增国, 赵秀芬, 李俊良. 山东省不同区域花生施肥现状分析. 中国农学通报, 2009, 25(13):129-133.
Fang Z G, Zhao X F, Li J L. The status analysis of fertilizer application on peanut in different region of Shandong province. Chin Agric Sci Bull, 2009, 25(13):129-133 (in Chinese with English abstract).
[3] 吴正锋. 花生高产高效氮素养分调控研究. 中国农业大学博士学位论文, 北京, 2014.
Wu Z F. Nitrogen Management for High Yield and High Efficiency of Peanut. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[4] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46:3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 46:3161-3171 (in Chinese with English abstract).
[5] Ju X T, Kou C L, Zhang F S, Christie P. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ Poll, 2006, 143:117-125.
doi: 10.1016/j.envpol.2005.11.005
[6] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 261-398.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 261-398(in Chinese).
[7] Wang C B, Zheng Y M, Shen P, Zheng Y P, Wu Z F, Sun X U, Yu T Y, Feng H. Determining N supplied sources and N use efficiency for peanut under applications of four forms of N fertilizers labeled by isotope15N. J Integr Agric, 2016, 15:432-439.
doi: 10.1016/S2095-3119(15)61079-6
[8] Manderscheid R, Pacholski A, Frühauf C, Weigel H J. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Res, 2009, 110:185-196.
doi: 10.1016/j.fcr.2008.08.002
[9] 周卫, 林葆, 朱海舟. 硝酸钙对花生生长和钙素吸收的影响. 土壤通报, 1995, (5):225-227.
Zhou W, Lin B, Zhu H Z. Effect of calcium nitrate on peanut growth and calcium absorption. Chin J Soil Sci, 1995, (5):225-227 (in Chinese with English abstract).
[10] 周录英, 李向东, 王丽丽, 汤笑, 林英杰. 钙肥不同用量对花生生理特性及产量和品质的影响. 作物学报, 2008, 34:879-885.
Zhou L Y, Li X D, Wang L L, Tang X, Lin Y J. Effects of different Ca applications on physiological characteristics, yield and quality in peanut. Acta Agron Sin, 2008, 34:879-885 (in Chinese with English abstract).
[11] 王建国. 水钙互作对南方红壤旱地花生产量影响机制. 湖南农业大学博士学位论文, 湖南长沙, 2017.
Wang J G. The Effective Mechanism of Calcium and Water on Yield of Peanut in Red Soil Upland in Southern of China. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2017 (in Chinese with English abstract).
[12] 戴良香, 张智猛, 张冠初, 张杨, 慈敦伟, 秦斐斐, 丁红. 氮肥用量对花生氮素吸收与分配的影响. 核农学报, 2020, 34:370-375.
Dai L X, Zhang Z M, Zhang G C, Zhang Y, Ci D W, Qin F F, Ding H. Effects of nitrogen application on nitrogen uptake and distribution in peanut. J Nucl Agric Sci, 2020, 34:370-375 (in Chinese with English abstract).
[13] Devi M J, Sinclair T R, Vadez V. Genotypic variability among peanut ( Arachis hypogeaL.) in sensitivity of nitrogen fixation to soil drying. Plant Soil, 2010, 330:139-148
doi: 10.1007/s11104-009-0185-9
[14] 王晓云, 李向东, 邹琦. 施氮对花生叶片多胺代谢及衰老的调控作用. 作物学报, 2001, 27:442-446.
Wang X Y, Li X D, Zou Q. Regulation effects of nitrogen application on the polyamine metabolism and senescence of peanut leaves. Acta Agron Sin, 2001, 27:442-446 (in Chinese with English abstract).
[15] 周录英, 李向东, 汤笑, 林英杰, 李宗奉, 李宝龙. 氮、磷、钾肥配施对花生生理特性及产量、品质的影响. 生态学报, 2008, 28:2707-2714.
Zhou L Y, Li X D, Tang X, Lin Y J, Li Z F, Li B L. Effects of N, P, K fertilizer combined application on physiological characteristics, yield and kernel quality of peanut. Acta Ecol Sin, 2008, 28:2707-2714 (in Chinese with English abstract).
[16] Ziaeidoustan H, Azarpour E, Safiyar S. Study the effects of different levels of irrigation interval, nitrogen and superabsorbent on yield and yield component of peanut. Int J Agric Crop Sci, 2013, 5:2071-2078.
[17] 杨吉顺, 李尚霞, 张智猛, 吴菊香, 樊宏. 施氮对不同花生品种光合特性及干物质积累的影响. 核农学报, 2014, 28:154-160.
Yang J S, Li S X, Zhang Z M, Wu J X, Fan H. Effect of nitrogen application on canopy photosynthetic and dry matter accumulation of peanut. J Nucl Agric Sci, 2014, 28:154-160 (in Chinese with English abstract).
[18] Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol R, 1999, 63:968-989.
pmid: 10585971
[19] 张翔, 张新友, 毛家伟, 张玉亭. 施氮水平对不同花生品种产量与品质的影响. 植物营养与肥料学报, 2011, 17:1417-1423.
Zhang X, Zhang X Y, Mao J W, Zhang Y T. Effects of nitrogen fertilization on yield and quality of different peanut cultivars. Plant Nutr Fert Sci, 2011, 17:1417-1423 (in Chinese with English abstract).
[20] 索炎炎, 范瑞兆, 司贤宗, 余琼, 孙艳敏, 毛家伟, 李亮, 余辉. 砂姜黑土区花生优质高产的氮钙硫施肥模型研究. 核农学报, 2019, 33:1448-1456.
Suo Y Y, Fan R Z, Si Z X, Yu Q, Sun Y M, Mao J W, Li L, Yu H. Nitrogen, calcium and sulfur fertilizing model for good quality and high yield of peanuts in Shajiang black soil area. J Nucl Agric Sci, 2019, 33:1448-1456 (in Chinese with English abstract).
[21] 刘颖, 伊淼, 王建国, 郭峰, 张佳蕾, 唐朝辉, 李新国, 万书波. 氮、钙配施对花生根系生长及氮肥利用的影响. 聊城大学学报(自然科学版), 2020, 33(4):98-104.
Liu Y, Yi M, Wang J G, Guo F, Zhang J L, Tang Z H, Li X G, Wan S B. Effects of nitrogen and calcium fertilizers on root growth and nitrogen utilization of peanut. J Liaocheng Univ(Nat Sci Edn), 2020, 33(4):98-104 (in Chinese with English abstract).
[22] 王建国, 张昊, 李林, 刘登望, 万书波, 王飞, 卢山, 郭峰. 施钙与覆膜对缺钙红壤花生氮、磷、钾吸收利用的影响. 中国油料作物学报, 2018, 40:110-118.
Wang J G, Zhang H, Li L, Liu D W, Wan S B, Wang F, Lu S, Guo F. Effects of calcium application and plastic film mulching cultivation on N, P, K accumulation, distribution and utilization efficiency of peanut (Arachis hypogacaL.) in red soil under Ca deficiency. Chin J Oil Crop Sci, 2018, 40:110-118 (in Chinese with English abstract).
[23] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract).
[24] 崔党群. Logistic曲线方程的解析与拟合优度测验. 数理统计与管理, 2005, 24(1):112-115.
Cui D Q. Analysis and making good fitting degree test for logistic curve regression equation. J Appl Statist Math, 2005, 24(1):112-115 (in Chinese with English abstract).
[25] 王才斌. 花生营养生理生态与高效施肥. 北京: 中国农业出版社, 2017. pp 34-128.
Wang C B. Peanut Nutrition Physiology and Ecology and Efficient Fertilization. Beijing: China Agriculture Press, 2017. pp 34-128(in Chinese).
[26] Zharare G E, Blamey F C, Asher C J. Effects of pod-zone calcium supply on dry matter distribution at maturity in two groundnut cultivars grown in solution culture. J Plant Nutr, 2012, 35:1542-1556.
doi: 10.1080/01904167.2012.689913
[27] 王建国, 张昊, 李林, 刘登望, 万书波, 王飞, 卢山, 郭峰. 施钙与覆膜栽培对缺钙红壤花生干物质生产、熟相、产量构成及品质的影响. 华北农学报, 2018, 33(4):131-138.
Wang J G, Zhang H, Li L, Liu D W, Wan S B, Wang F, Lu S, Guo F. Effects of calcium fertilizer and plastic film mulching cultivation on dry matter production, maturity performance, yield components and quality of peanut in red soil under Ca deficiency. Acta Agric Boreali-Sin, 2018, 33(4):131-138 (in Chinese with English abstract).
[28] Yang S, Li L, Zhang J L, Geng Y, Guo F, Wang J G, Meng J J, Sui N, Wan S B, Li X G. Transcriptome and differential expression profiling analysis of the mechanism of Ca2+ regulation in peanut (Arachis hypogaea) pod development. Front Plant Sci, 2017, 8:1609.
doi: 10.3389/fpls.2017.01609 pmid: 29033956
[29] 孙虎, 李尚霞, 王月福, 王铭伦. 施氮量对不同花生品种积累氮素来源和产量的影响. 植物营养与肥料学报, 2010, 16:153-157.
Sun H, Li S X, Wang Y F, Wang M L. Effects of nitrogen application on source of nitrogen accumulation and yields of different peanut cultivars. Plant Nutr Fert Sci, 2010, 16:153-157 (in Chinese with English abstract)
[30] 张智猛, 戴良香, 慈敦伟, 张冠初, 田家明, 秦斐斐, 徐扬, 丁红. 生育后期干旱胁迫与施氮量对花生产量及氮素吸收利用的影响. 中国油料作物学报, 2019, 41:614-621.
Zhang Z M, Dai L X, Ci D W, Zhang G C, Tian J M, Qin F F, Xu Y, Ding H. Drought effects at late growth stage and nitrogen application rate on yield and N utilization of peanut. Chin J Oil Crop Sci, 2019, 41:614-621 (in Chinese with English abstract).
[31] Adams F, Hartzog D L. The nature of yield responses of Florunner peanuts to lime. Peanut Sci, 1980, 7:120-123.
doi: 10.3146/i0095-3679-7-2-15
[32] Adams J F, Hartzog D L, Nelson D B. Supplemental calcium application on yield, grade, and seed quality of runner peanut. Agron J, 1993, 85:86-93.
doi: 10.2134/agronj1993.00021962008500010018x
[33] 孙虎, 王月福, 王铭伦, 赵长星. 施氮量对不同类型花生品种衰老特性和产量的影响. 生态学报, 2010, 30:2671-2677.
Sun H, Wang Y F, Wang M L, Zhao C X. Effects of nitrogen fertilizer rate on senescence characteristics and yield of different peanut (Arachis hypogaea L.) cultivars. Acta Ecol Sin, 2010, 30:2671-2677 (in Chinese with English abstract).
[34] 张佳蕾, 郭峰, 孟静静, 杨莎, 耿耘, 杨佃卿, 李元高, 张文生, 李新国, 万书波. 钙肥对旱地花生生育后期生理特性和产量的影响. 中国油料作物学报, 2016, 38:321-327.
Zhang J L, Guo F, Meng J J, Yang S, Geng Y, Yang D Q, Li Y G, Zhang W S, Li X G, Wan S B. Effects of calcium fertilizer on physiological characteristics at late growth stage and pod yield of peanut on dryland. Chin J Oil Crop Sci, 2016, 38:321-327 (in Chinese with English abstract).
[35] 丁红, 张智猛, 戴良香, 杨吉顺, 慈敦伟, 秦斐斐, 宋文武, 万书波. 水氮互作对花生根系生长及产量的影响. 中国农业科学, 2015, 48:872-881.
Ding H, Zhang Z M, Dai L X, Yang J S, Ci D W, Qin F F, Song W W, Wan S B. Effects of water and nitrogen interaction on peanut root growth and yield. Sci Agric Sin, 2015, 48:872-881 (in Chinese with English abstract).
[36] 郑永美, 王春晓, 刘岐茂, 吴正锋, 王才斌, 孙秀山, 郑亚萍. 氮肥对花生根系生长和结瘤能力的调控效应. 核农学报, 2017, 31:2418-2425.
Zheng Y M, Wang C X, Liu Q M, Wu Z F, Wang C B, Sun X S, Zheng Y P. Effect of nitrogen fertilizer regulation on root growth and nodulating ability of peanut. J Nucl Agric Sci, 2017, 31:2418-2425 (in Chinese with English abstract).
[37] 刘俊华, 吴正锋, 沈浦, 于天一, 郑永美, 孙学武, 李林, 陈殿绪, 王才斌, 万书波. 氮肥与密度互作对单粒精播花生根系形态、植株性状及产量的影响. 作物学报, 2020, 46:1605-1616.
Liu J H, Wu Z F, Shen P, Yu T Y, Zheng Y M, Sun X W, Li L, Chen D X, Wang C B, Wan S B. Effects of nitrogen and density interaction on root morphology, plant characteristic and pod yield under single seed planting in peanut. Acta Agron Sin, 2020, 46:1605-1616 (in Chinese with English abstract).
[38] 史晓龙, 戴良香, 宋文武, 丁红, 慈敦伟, 张智猛, 石书兵. 施用钙肥对盐胁迫条件下花生生长发育和产量的影响. 花生学报, 2017, 46(2):40-46.
Shi X L, Dai L X, Song W W, Ding H, Ci D W, Zhang Z M, Shi S B. Effects of calcium fertilizer application on development and yield of peanut under salt stress. J Peanut Sci, 2017, 46(2):40-46 (in Chinese with English abstract).
[39] Rogers H T. Liming for peanuts in relation to exchangeable soil calcium and effect on yield, quality, and uptake of calcium and potassium. J Am Soc Agron, 1948, 40:15-31.
doi: 10.2134/agronj1948.00021962004000010002x
[40] 孙晨桐. 氮肥水平对花生生长发育及氮素利用的影响. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2019.
Sun C T. Effects of Nitrogen Levels on Growth and Nitrogen Utilization of Peanut. MS Thesis of Shenyang Agricultural University, Shenyang, Liaoning, China, 2019 (in Chinese with English abstract).
[41] 余常兵, 李银水, 谢立华, 胡小加, 廖伯寿, 陈防, 廖星. 湖北省花生平衡施肥技术研究: IV. 农户花生施肥状况. 湖北农业科学, 2011, 50:4354-4356.
Yu C B, Li Y S, Xie L H, Hu X J, Liao B S, Chen F, Liao X. Study on peanut balanced fertilization technique in Hubei province: IV. Status of farmer peanut fertilization. Hubei Agric Sci, 2011, 50:4354-4356 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!