作物学报 ›› 2022, Vol. 48 ›› Issue (1): 121-137.doi: 10.3724/SP.J.1006.2022.02090
赵海涵1(), 练旺民1, 占小登1, 徐海明3, 张迎信1, 程式华1, 楼向阳1,*(), 曹立勇1,2,*(), 洪永波1,*()
ZHAO Hai-Han1(), LIAN Wang-Min1, ZHAN Xiao-Deng1, XU Hai-Ming3, ZHANG Ying-Xin1, CHENG Shi-Hua1, LOU Xiang-Yang1,*(), CAO Li-Yong1,2,*(), HONG Yong-Bo1,*()
摘要:
白叶枯病是水稻生产最严重的细菌性病害, 挖掘新的白叶枯病抗性基因资源并培育抗病品种是控制该病害的重要方法。本研究利用父母本抗性差异较大的协优9308衍生的139个重组自交系群体作为遗传材料, 人工接种不同白叶枯菌后的病斑长度作为连续型表型, 结合经DNA深度测序获得的476,505个单核苷酸多态性(single-nucleotide polymorphism, SNP)标记进行全基因组关联分析(genome-wide associated study, GWAS)。结果表明在P < 1×10-4下, 4个菌株处理后共鉴定到109个与白叶枯抗性显著关联的SNPs位点, 解释表型变异率59.78%~63.29%。其中CR4接种发现了25个SNP位点其贡献率为61.00%, 在这些SNP位点附近共筛选到19个基因, 其中有2个为NBS-LRR抗病相关基因(LOC_Os11g43420和LOC_Os11g45930)。表达分析验证发现该2个基因在抗性亲本中恢9308的表达量分别为感病母本协青早B的4.42倍和8.86倍, 表明其可能在正调控白叶枯病抗性机制中发挥重要作用。进化树分析发现这2个候选基因与已克隆的抗性基因属于不同的亚组, 表明可能是新基因。本研究为进一步挖掘白叶枯抗性基因和培育抗病品种提供了理论基础和基因资源。
[1] | Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. The global burden of pathogens and pests on major food crops. Nat Ecol Evol, 2019, 3:430-439. |
[2] | Mew T W. Focus on bacterial blight of rice. Plant Dis, 1993, 77:5-12. |
[3] | Niño-Liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2006, 7:303-324. |
[4] | Mew W T. Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol, 1987, 25:359-382. |
[5] | Kim S M. Identification of novel recessive gene Xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip. Theor Appl Genet, 2018, 131:2733-2743. |
[6] | Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J, 2015, 84:694-703. |
[7] | Chen X, Liu P, Mei L, He X, Chen L, Liu H, Shen S, Ji Z, Zheng X, Zhang Y, Gao Z, Zeng D, Qian Q, Ma B. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial disease in rice. Plant Commun, 2021, 2:100143. |
[8] | Luo D, Huguet-Tapia J, Raborn R T, White F F, Brendel V P, Yang B. The Xa7 resistance gene guards the susceptibility gene SWEET14 of rice against exploitation by bacterial blight pathogen. Plant Commun, 2021, 2:100164. |
[9] | Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z X, Kono I. Expression of Xa1, a bacterial blight resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA, 1998, 95:1663-1668. |
[10] | Chu Z H, Fu B Y, Yang H, Xu C G, Li Z K, Sanchez A, Park Y J, Bennetzen J L, Zhang Q F, Wang S P. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet, 2006, 112:455-461. |
[11] | Blair M W, Garris A J, Iyer A S, Chapman B, Kresovich S, McCouch S R. High resolution genetic mapping and candidate gene identification at the Xa5 locus for bacterial blight resistance in rice(Oryza sativa L.). Theor Appl Genet, 2003, 107:62-73. |
[12] | Gu K, Tian D, Yang F, Wu L, Skeekala C, Wang D. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativaL. Theor Appl Genet, 2004, 5:800-807. |
[13] | Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37:517-527 |
[14] | Sun X, Yang Z, Wang S, Zhang Q. Identification of a 47-kb DNA fragment containing Xa4, a locus for bacterial blight resistance in rice. Theor Appl Genet, 2003, 4:683-687. |
[15] | 王春连. 水稻抗白叶枯病基因Xa23的图位克隆, 中国农业科学院博士学位论文,北京, 2006. |
Wang C L. Mapping Cloning of Rice Bacterial Blight Resistance Gene Xa23 in China. PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing,China, 2006 (in Chinese with English abstract). | |
[16] | Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X. The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell, 2014, 26:497-515. |
[17] | Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H. A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21. Science, 1995, 270:1804-1806. |
[18] | Wang C L, Zhang X P, Fan Y L, Gao Y, Zhu Q L, Zheng C K, Qin T F, Li Y Q, Che J Y. Xa23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant, 2015. 8:290-302. |
[19] | Heath M C. Hypersensitive response-related death. Plant Mol Biol, 2000, 44:321-334. |
[20] | Shirasu K, Schulze-Lefert P. Regulators of cell death in disease resistance. Plant Mol Biol, 2000, 44:371-385. |
[21] | Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol, 2009, 60:379-406. |
[22] | Monteiro F, Nishimura M T. Structure fuction and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity. Annu Rev Phytopathol, 2018, 56:243-267. |
[23] | Andersen E J, Nepal M P, Purintun J M, Nelson D, Mermigka G, Sarris P F. Wheat disease resistance genes and their diversification through integrated domain fusions. Front Genet, 2020, 11. |
[24] | Monosi B, Wisser R J, Pennill L, Hulbert S H. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447. |
[25] | Ronald P C, Albano B, Tabien R, Abenes L, Tanksley S D. Genetic and physical analysis of the rice bacterial blight disease resistance locus,Xa21. Mol Gen Genet, 1992, 236:113-120. |
[26] | Kiyosawa S, Yamaguchi H, Yamada M. The influence of resistance gene frequencies in rice plants on virulence gene frequencies in blast fungus population in Japan. Jpn J Phytopathol, 1982, 48:199-209. |
[27] | Khan M A, Naeem M, Iqbal M. Breeding approaches for bacterial leaf blight resistance in rice (Oryza sativa L.), current status and future directions. Eur J Plant Pathol, 2014, 139:27-37. |
[28] | Li Z K, Arif M, Zhong D B, Fu B Y, Xu J L, Domingo-Rey J. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103:7994-7999 |
[29] | Zhang F, Xie X, Xu M, Wang W, Xu J, Zhou Y. Detecting major QTL associated with resistance to bacterial blight using a set of rice reciprocal introgression lines with high density SNP markers. Plant Breed, 2015, 134:286-292. |
[30] | 杨长登, 曾大力, 马良勇. 水稻籼粳交DH群体白叶枯病抗性的QTL定位. 中国水稻科学, 2006, 20:102-104. |
Yang C D, Zeng D L, Ma L Y. Mapping QTLs for bacterial blight resistance in a DH population from japonica/indica cross of rice(Oryza sativa). Chin J Rice Sci, 2006, 20:102-104 (in Chinese with English abstrat). | |
[31] | 陈天晓, 朱亚军, 密雪飞. 利用水稻MAGIC群体关联定位白叶枯病抗性QTL和创制抗病新种质. 作物学报, 2016, 42:1437-1447. |
Chen T X, Zhu Y J, Mi X F. Mapping of QTLs for bacterial blight resistance and screening of resistant materials using MAGIC populations of rice. Acta Agron Sin, 2016, 42:1437-1447 (in Chinese with English abstrat). | |
[32] | Antoni R J. Association genetics in crop improvement. Curr Opin Plant Biol, 2010, 13:174-180. |
[33] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42:961. |
[34] | Tseng H Y, Lin D G, Hsieh H Y, Tseng Y J, Tseng W B, Chen C W, Wang C S. Genetic analysis and molecular mapping of QTLs associated with resistance to bacterial blight in a rice mutant,SA0423. Euphytica, 2015, 205:231-241. |
[35] | Niño-liu D O, Ronald P C, Bogdanove A J. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol, 2010, 7:303-324. |
[36] | Ogawa T, Khush G S. Major genes for resistance to bacterial blight in rice. Bacterial Blight Rice. 1989. |
[37] | Basavaraj S H, Singh V K, Singh A, Singh A, Singh A, Anand D. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed, 2010, 26:293-305. |
[38] | Zhou L Y, Liu S Y, Wu W X, Chen D B, Zhan X D, Zhu A K, Zhang Y X, Cheng S H, Cao L Y, Lou X Y, Xu H M. Dissection of genetic architecture of rice plant height and heading date by multiple-strategy-based association studies. Sci Rep, 2016, 6:29718. |
[39] | Mather K A, Caicedo A L, Polato N R, Olsen K M, McCouch S, Purugganan M D, The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics, 2007, 177:2223-2232. |
[40] | Chen X, Shang J, Chen D. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006, 46:794-804. |
[41] | Cheng Q, Mao W, Xie W, Liu Q, Cao J, Yuan M, Zhang Q, Li X H, Wang S P. Characterization of a disease susceptibility locus for exploring an efficient way to improve rice resistance against bacterial blight. Sci China-Life Sci, 2017, 60:298-306. |
[42] | Li W T, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Zhu L H, Li S G, Chen X W. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170:114-126. |
[43] | 章琦, 林汉明. 章琦稻病抗性研究选集. 北京: 中国农业出版社, 2010. p 555. |
Zhang Q, Lam H M. Seleted Works of Zhang Qi on Rice Disease Resistance. Beijing: China Agriculture Press, 2010. p 555 (in Chinese). | |
[44] | Kou Y J, Li X H, Xiao J H, Wang S P. Identification of genes contributing to quantitative disease resistance in rice. Sci China: Life Sci, 2010, 53:1263-1273. |
[45] | 王永军, 吴晓蕾, 贺超英, 张劲松, 陈受宜, 盖钧镒. 大豆作图群体检验与调整后构建的遗传图谱. 中国农业科学, 2003, 36:1254-1260. |
Wang Y J, Wu X L, He C Y, Zhang J S, Chen S Y, Gai J Y. A soybean genetic linkage map constructed after the mapping population being tested and adjusted. Sci Agric Sin, 2003, 36:1254-1260 (in Chinese with English abstrat). | |
[46] | Liu M H, Kang H X, Xu Y C, Peng Y, Wang D, Gao L J, Wang X L, Ning Y S, Wu J, Liu W D, Li C Y, Liu B, Wang G L. Genome-wide association study identifies an NLR gene that confers partial resistance to Magnaporthe oryzae in rice. Plant Biotech J, 2020, 18:1376-1383. |
[47] | Wang X Q, Pang Y L, Zhang J, Wu Z C, Chen K, Ali J, Ye G Y, Xu J L, Li Z K. Genome-wide and gene-based association mapping for rice eating and cooking characteristics and protein content. Sci Rep, 2017, 7:17203. |
[48] | Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun, 2011, 1:467. |
[49] | Zhang F, Wu Z C, Wang M M, Zhang F, Dingkuhn M, Xu J L, Zhou Y L, Li Z K. Genome-wide association analysis identifies resistance loci for bacterial blight in a diverse collection of indica rice germplasm. PLoS One, 2017, 12:e0174598. |
[50] | Song W Y, Pi L Y, Bureau T E, Ronald P C. Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol Gen Genet, 1998, 258:449-456. |
[51] | Sesma A, Osbourn A E. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 2004, 431:582-586. |
[52] | Poland J A, Bradbury P J, Buckler E S. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011, 108:6893-6898. |
[53] | Monosi B, Wisser R J, Pennill L. Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet, 2004, 109:1434-1447. |
[54] | Basavaraj S H, Singh V K, Singh A. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed, 2010, 26:293-305. |
[55] | Triplett L R, Cohen S P, Heffelfinger C. A resistance locus in the American heirloom rice variety carolina gold select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. Plant J, 2016, 87:472-483. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[4] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[5] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[6] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[7] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[8] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
[9] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
[10] | 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110. |
[11] | 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902. |
[12] | 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207. |
[13] | 荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因[J]. 作物学报, 2020, 46(10): 1557-1565. |
[14] | 邹伟伟,路雪丽,王丽,薛大伟,曾大力,李志新. 不同氮水平下水稻钾吸收及全基因组关联分析[J]. 作物学报, 2019, 45(8): 1189-1199. |
[15] | 李秀诗,吴迅,吴文强,刘鹏飞,郭向阳,王安贵,祝云芳,陈泽辉. 玉米Suwan种质改良过程中的关键基因组区段发掘[J]. 作物学报, 2019, 45(4): 568-577. |
|