欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (01): 22-28.doi: 10.3724/SP.J.1006.2014.00022

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

AcAMP-sn基因抗全蚀病小麦新种质的创制与鉴定

杨坤,刘欣,杜丽璞,叶兴国,张增艳*   

  1. 中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 / 农业部麦类生物学与遗传育种重点实验室,北京 100081
  • 收稿日期:2013-06-17 修回日期:2013-09-16 出版日期:2014-01-12 网络出版日期:2013-10-22
  • 通讯作者: 张增艳, E-mail: zhangzengyan@caas.cn, Tel: 010-82108781
  • 基金资助:

    本研究由国家转基因生物新品种培育重大科技专项(2011ZX08002-001, 2013ZX08002001-004)资助。

Development and Characterization of AcAMP-sn Transgenic Wheat with Enhanced Resistance to Wheat Take-all

YANG Kun,LIU Xin,DU Li-Pu,YE Xing-Guo,ZHANG Zeng-Yan*   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2013-06-17 Revised:2013-09-16 Published:2014-01-12 Published online:2013-10-22
  • Contact: 张增艳, E-mail: zhangzengyan@caas.cn, Tel: 010-82108781

摘要:

抗菌肽是一类具有广谱抗菌性的小分子多肽,在植物防卫反应中起着重要作用。本研究人工合成了洋葱抗菌肽基因AcAMP-sn,利用基因重组技术构建了该基因的单子叶植物表达载体pAHC25::AcAMP-sn,使AcAMP-sn基因的表达受玉米Ubiqutin启动子控制。采用基因枪介导法,将AcAMP-sn基因导入小麦品种扬麦18,利用PCR、半定量RT-PCR及荧光实时定量RT-PCR检测、分析转基因小麦T0~T4代目的基因及其表达量,并对转基因植株进行全蚀病的抗性鉴定。PCR检测结果表明,导入的AcAMP-sn基因能够在转基因小麦中遗传。与受体扬麦18相比,在5个转基因小麦T4代株系中,AcAMP-sn基因的表达量及全蚀病抗性均显著提高,且全蚀病菌的相对含量明显下降,说明AcAMP-sn基因的过表达可以增强转基因小麦对全蚀病的抗性。

关键词: 洋葱抗菌肽, 转基因小麦, 小麦全蚀病, 抗性

Abstract:

Antimicrobial peptides, small molecular weight proteins with broad spectrum antimicrobial activity, play important roles in plant defense responses. The open-reading-frame sequence of AcAMP-sn was synthesized and used to construct the gene transformation vector pAHC25::AcAMP-sn, in which AcAMP-sn gene was driven by maize ubiquitin promoter and should be highly expressed in monocot plants. The vector pAHC25::AcAMP-sn DNA was introduced into Yangmai 18 via particle bombardment. AcAMP-sn transgenic wheat plants were subjected to PCR, semi-RT-PCR, Q-RT-PCR analyses, and disease response assessments. PCR analyses revealed that theintroducedgene AcAMP-sn could be stably inherited in five transgenic wheat lines from T0 to T4 generations. Semi-RT-PCR and Q-RT-PCR analyses showed that the AcAMP-sn gene was highly expressed in transgenic wheat lines compared with untransformed Yangmai 18. Based on disease response assessments for T4 generations, the significantly enhanced-resistance to take-all accompanied with decreased fungal abundance, in the five independent AcAMP-sn transgenic lines. Over-expression of AcAMP-sn gene in transgenic wheat plants confers increased resistance to wheat take-all.

Key words: Antimicrobial peptide from onion, Transgenic wheat, Wheat take-all, Resistance

[1]Gutteridge R J, Bateman G L, Todd A D. Variation in the effects of take-all disease on grain yield and quality of winter cereals in field experiments. Pest Manag Sci, 2003, 59: 215–224



[2]Cook J R. Take-all of wheat. Physiol Mol Plant Pathol, 2003, 62: 73–86



[3]Melo M N, Ferre R, Castanho M A. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol, 2009, 7: 245–250



[4]Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Mol Breed, 2006, 17: 159–171



[5]Broekaert W F, Cammue B P, De Bolle M F, Thevissen K, De Samblanx G W, Osborn R W, Nielson K. Antimicrobial peptides from plants. Crit Rev. Plant Sci, 1997, 16: 297–323



[6]Iwai T, Kaku H, Honkura R, Nakamura S, Ochiai H, Sasaki T, Ohashi Y. Enhanced resistance to seed-transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thionin. Mol Plant Microbe Interact, 2002, 15: 515–521



[7]Roy-Barman S, Sautter C, Chattoo B B. Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Res, 2006, 15: 435–446



[8]Almasia N I, Bazzini A A, Hopp H E, Vazquez-Rovere C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol Plant Pathol, 2008, 9: 329–338



[9]Bi Y M, Cammue B, Goodwin P, Krishnaraj S, Saxena P. Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1. Plant Cell Rep, 1999, 18: 835–840



[10]Li X, Gasic K, Cammue B, Broekaert W, Korban S S. Transgenic rose lines harboring an antimicrobial protein gene, Ace-AMP1, demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa). Planta, 2003, 218: 226–232



[11]Cammue B P, Thevissen K, Hendriks M, Eggermont K, Goderis I J, Proost P, Van Damme J, Osborn R W, Guerbette F, Kader J C, Et Al. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol, 1995, 109: 445–455



[12]徐惠君, 庞俊兰, 叶兴国, 杜丽璞, 李连城, 辛志勇, 马有志, 陈剑平, 陈炯, 程顺和, 吴宏亚. 基因枪介导法向小麦导入黄花叶病毒复制酶基因的研究. 作物学报, 2001, 27: 688–694



Xu H J, Pang J L, Ye X G, Du L P, Li L C, Xin Z Y, Ma Y Z, Chen J P, Chen J, Cheng S H, Wu H Y. Study on the gene transferring of Nib8 into wheat for its resistance to the Yellow mosaic virus by bombardment. Acta Agron Sin, 2001, 27: 688–694 (in Chinese with English abstract)



[13]Sharp P, Kreis M, Shewry P, Gale M. Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet, 1988, 75: 286–290



[14]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods, 2001, 25: 402–408



[15]董建力, 惠红霞, 黄丽丽, 王敬东, 朱永兴, 陈孝, 叶兴国. 小麦全蚀病抗性鉴定方法的优化及抗源筛选研究. 西北农林科技大学学报(自然科学版), 2009, 37(3): 159–162



Dong J L, Hui H X, Huang L L, Wang J D, Zhu Y X, Chen X, Ye X G.Optimization of identification technique and germplasm screening of resistance to take-all in wheat. J Northwest A&F Univ (Nat Sci Edn), 2009, 37(3): 159–162 (in Chinese with English abstract)



[16]Bithell S, Butler R, Harrow S, Mckay A, Cromey M. Susceptibility to take-all of cereal and grass species, and their effects on pathogen inoculum. Ann Appl Biol, 2011, 159: 252–266



[17]Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt A Y, Sarniguet A. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol, 2011, 12: 839–854



[18]魏芳勤, 武军, 赵继新, 陈新宏, 刘淑会, 庞玉辉. 普通小麦和华山新麦草衍生系H9021对全蚀病抗性的遗传分析. 麦类作物学报, 2009, 29: 153–156



Wei F Q, Wu J, Zhao J X, Chen X H, Liu S H, Pang Y H. Genetic analysis of resistance to take-all fungus of wheat line H9021 derived from wheat-Psathyrostachys huashanica. J Triticeae Crops, 2009, 29: 153–156 (in Chinese with English abstract)



[19]任丽娟, 颜伟, 陈怀谷, 姚金保, 马鸿翔. 小麦纹枯病抗性的主基因+多基因遗传分析. 江苏农业学报, 2010, 26: 1156–1161



Ren L J, Yan W, Chen H G, Yao J B, Ma H X. Major genes plus polygenes inheritance analysis of resistance to wheat sharp eyespot. Jiangsu J Agric Sci, 2010, 26: 1156–1161 (in Chinese with English abstract)



[20]祝秀亮, 李钊, 杜丽璞, 徐惠君, 杨丽华, 庄洪涛, 马翎健, 张增艳. 兼抗全蚀病和白粉病小麦新种质的创制与鉴定. 作物学报, 2012, 38: 2178–2184



Zhu X L, Li Z, Du L P, Xu H J, Yang L H, Zhuang H T, Ma L J, Zhang Z Y. Development and characterization of wheat lines with resistance to take-all and powdery mildew diseases. Acta Agron Sin, 2012, 38: 2178–2184 (in Chinese with English abstract)



[21]Liu X, Yang L, Zhou X, Zhou M, Lu Y, Ma L, Ma H, Zhang Z. Transgenic wheat expressing Thinopyrum intermedium MYB transcription factor TiMYB2R-1 shows enhanced resistance to the take-all disease. J Exp Bot, 2013, 64: 2243–2253



[22]Salcedo G, Sanchez-Monge R, Barber D, Diaz-Perales A. Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta, 2007, 1771: 781–791



[23]Maldonado A M, Doerner P, Dixon R A, Lamb C J, Cameron R K. A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature, 2002, 419: 399–403

[1] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[2] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[3] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[7] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[8] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[9] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[10] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[11] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[12] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
[13] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[14] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[15] 李威涛,徐志军,蔡岩,郭建斌,喻博伦,黄莉,陈玉宁,周小静,罗怀勇,刘念,陈伟刚,任小平,姜慧芳. 抗青枯病兼大果和高出仁率的花生新种质创制[J]. 作物学报, 2020, 46(4): 484-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!