作物学报 ›› 2014, Vol. 40 ›› Issue (01): 29-36.doi: 10.3724/SP.J.1006.2014.00029
张帆,蒋雷,鞠丽萍,金秀锋,王轩,张晓科*,王宏礼,付晓洁
ZHANG Fan,JIANG Lei,JU Li-Ping,JIN Xiu-Feng,WANG Xuan,ZHANG Xiao-Ke*,WANG Hong-Li,FU Xiao-Jie
摘要:
抗旱相关基因的挖掘和分子标记开发对选育抗旱小麦品种有重要意义。采用同源克隆、电子克隆、RACE技术和生物信息学分析手段,获得了普通小麦硫氧还蛋白(Trx)超家族一个新基因(TaNRX)的全长cDNA序列(GenBank登录号为KC890769),包含2015 bp,其中开放阅读框1734 bp;预测编码577个氨基酸,分子量为63.79 kD,含3个Trx活性功能区,其中2个存在典型的Cys-X1-X2-Cys结构,具有催化氧化还原反应的活性。TaNRX基因被定位在小麦的5B染色体短臂上,包含4个外显子和3个内含子。比较该基因在两组极端相对发芽率品种中的序列差异,发现第1个内含子差异明显。基于差异位点开发了4个显性互补标记,并用其检测150份小麦品种(系)。检测到TaNRX基因在普通小麦中至少存在2种与抗旱相关的等位变异,分别是TaNRX-a和TaNRX-b;TaNRX-a基因型的品种(系)平均相对发芽率显著高于TaNRX-b基因型(P<0.01),说明开发的标记可被用于小麦抗旱性鉴定筛选。
[1]Zheng W J, Xu Z S, Chen M, Li L C, Chai S C, Ma Y Z. Isolation and characterization of receptor-like protein kinase WELP1 in wheat. Afr J Microbiol Res, 2012, 6: 2410–2418[2]杨召恩, 杨作仁, 刘坤, 刘传亮, 张朝军, 李付广. 一个亚洲棉MYB家族新基因的克隆及特征分析. 中国农业科学, 2013, 46: 195–204Yang Z E, Yang Z R, Liu K, Liu C L, Zhang C J, Li F G. Cloning and characterization of a novel gene of MYB family from Gossypium arboreum L. Sci Agric Sin, 2013, 46: 195–204 (in Chinese with English abstract)[3]Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot, 2007, 58: 221–227[4]Kosová K, Vítámvás P, Prášil I T, Renaut J. Plant proteome changes under abiotic stress: contribution of proteomics studies to understanding plant stress response. J Proteomics, 2011, 74: 1301–1322[5]Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci, 2009, 177: 570–576[6]Peng Z, Wang M, Li F, Lv H, Li C, Xia G. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics, 2009, 12: 2676–2686[7]Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48: 909–930[8]Arnér E S J, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem, 2001, 267: 6102–6109[9]Wong J H, Balmer Y, Cai N, Tanaka C K, Vensel W H, Hurkman W J, Buchanan B B. Unraveling thioredoxin-linked metabolic processes of cereal starchy endosperm using proteomics. FEBS Lett, 2003, 547: 151–156[10]Meyer Y, Vignols F, Reichheld J P. Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol, 2002, 347: 394–402[11]夏德习, 管清杰, 金淑梅, 李宇佳, 梁涵, 张欣欣, Shunskau N, Tetsuo T, 柳参奎. 拟南芥硫氧还蛋白M1型基因(AtTRX m1)与环境逆境之间的关系. 分子植物育种, 2007, 5: 21–26Xia D X, Guan Q J, Jin S M, Li Y J, Liang H, Zhang X X, Shunskau N, Tetsuo T, Liu S K. The relationship of Arabidopsis thaliana thioredoxin M-type 1 (AtTRX m1) gene with environmental stress. Mol Plant Breed, 2007, 5: 21–26 (in Chinese with English abstract)[12]Broin M, Rey P. Potato plants lacking the CDSP32 plastidic thioredoxin exhibit overoxidation of the BAS1 2-cysteine peroxiredoxin and increased lipid peroxidation in thylakoids under photooxidative stress. Plant Physiol, 2003, 132: 1335–1343[13]Laughner B J, Sehnke P C, Ferl R J. A novel nuclear member of the thioredoxin superfamily. Plant physiol, 1998, 118: 987–996[14]Deshmukh V, Kurtkoti R. Secondary Structure Prediction and Phylogenetic Analysis of Salt Tolerant Proteins. Global J Mol Sci, 2010, 5: 30–36[15]Morya V K., Yadav S, Kim E K, Yadav D. In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol, 2012, 166: 243–257[16]Akash M S H, Rehman K, Gillani Z, Sun H, Chen S. Cross-species amino acids sequence comparison and computational docking of human IL-1Ra and rat IL-1Ra on rat receptor. J Proteomics Bioinform, 2013, 6: 38–42[17]Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol, 2013, DOI 10.1007/s00253-013-4800-6[18]Zhang A, Qiu L, Huang L, Yu X, Lu G, Cao J. Isolation and characterization of an anther-specific polygalacturonase gene, BcMF16, in Brassica campestris ssp. chinensis. Plant Mol Biol Rep, 2012, 30: 330–338[19]Steinway S, Dannenfelser R, Laucius C, Hayes J, Nayak, S. JCoDA: a tool for detecting evolutionary selection. BMC Bioinf, 2010, 11: 284[20]Ma W, Zhang W, Gale K R. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003, 134: 51–60[21]Guruprasad K, Reddy B V, Pandit M W. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng, 1990, 4: 155–161[22]Kurooka H, Kato K, Minoguchi S, Takahashi Y, Ikeda J E, Habu S, Osawa N, Buchberg A M, Moriwaki K, Shisa H, Honjo T. Cloning and characterization of the nucleoredoxin gene that encodes a novel nuclear protein related to thioredoxin. Genomics, 1997, 39: 331–339[23]Funato Y, Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxidants & Redox Signaling, 2007, 9: 1035–1058[24]王磊, 陈景堂, 张祖新. 主要禾谷类作物比较基因组学研究策略与进展. 遗传, 2007, 29: 1055–1060Wang L, Chen J T, Zhang Z X. Strategies and progresses on cereal comparative genomics. Hereditas, 2007, 29: 1055–1060 (in Chinese with English abstract)[25]周江鸿, 赵素珍, 漆小泉. 短柄草与麦类作物的比较基因组学研究进展. 植物生理学报, 2011, 47: 421–426ZhouJ H, Zhao S Z, Qi X Q. Recent progresses in comparative genomics of Brachypodium and Triticeae crops. Plant Physiol J, 2011, 47: 421-426 (in Chinese with English abstract)[26]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theor Appl Genet, 2008, 116: 213–221[27]Fu D, Sz?cs P, Yan L, Helguera M, Skinner J S, von Zitzewitz J, Hayes M, Dubcovsky J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics, 2005, 273: 54–65 |
[1] | 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287. |
[2] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[3] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[4] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[5] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[8] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[9] | 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404. |
[10] | 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450. |
[11] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[12] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[13] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[14] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[15] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
|