作物学报 ›› 2014, Vol. 40 ›› Issue (01): 37-44.doi: 10.3724/SP.J.1006.2014.00037
梁慧珍1,余永亮1,杨红旗1,张海洋1,董薇1,李彩云1,杜华1,巩鹏涛2,刘学义3,方宣钧4
LIANG Hui-Zhen1,YU Yong-Liang1,YANG Hong-Qi1,ZHANG Hai-Yang1,DONG Wei1,LI Cai-Yun1,GONG Peng-Tao2,LIU Xue-Yi3,FANG Xuan-Jun4
摘要:
[1]Boerma H R, Specht J E. Soybeans: Improvement, Production and Uses, 3rd Edn. Madison, Wisconsin, USA: SSSA Publishers, 2004. pp 303–396 [2]Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl Genet, 2004, 109: 122–128[3]梁慧珍, 余永亮, 杨红旗, 张海洋, 董微, 李彩云, 巩鹏涛, 刘学义, 方宣钧. 不同环境下大豆荚粒性状的遗传与QTL分析. 中国农业科学, 2012, 45: 2568–2579Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Li C Y, Gong P T, Liu X Y, Fang X J. Genetic analysis and QTL mapping of pod-grain traits in soybean under different environments. Sci Agric Sin, 2012, 45: 2568-2579 (in Chinese with English abstract)[4]Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor App Genet, 2001, 103: 702–709[5]Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R. Seed quality QTL in a prominent soybean population. Theor App Genet, 2004, 109: 552–561[6]Reyna V, Sneller C H. Evaluation of marker assisted introgression of yield QTL alleles into adapted soybean. Crop Sci, 2001, 41: 1317–1321[7]Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Clanzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68–74[8]Zhang W K, Wang Y J , Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, ChenS Y. QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor App Genet. 2004, 108: 1131–1139[9]朱军. 广义遗传模型与数量遗传分析新方法. 浙江农业大学学报, 1994, 20: 551–559Zhu J. General genetic models and new analysis methods for quantitative traits. J Zhejiang Agric Univ. 1994, 20: 551–559(in Chinese with English abstract)[10]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255–1264[11]杨钊钊, 李永祥, 刘成, 刘志斋, 李春辉, 李清超, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 王天宇, 黎裕. 基于多个相关群体的玉米雄穗相关性状QTL分析. 作物学报, 2012, 38: 1435–1442Yang Z Z, Li Y X, Liu C, Liu Z Z, Li C H, Li QC, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi Y S, Song Y C, Wang T Y, Li Y. QTL Analysis of tassel-related traits in maize (Zea mays L.) using multiple connected populations. Acta Agron Sin, 2012, 38: 1435–1442 (in Chinese with English abstract)[12]魏良明, 戴景瑞, 刘占先, 鄂立柱. 普通玉米蛋白质、淀粉和油分含量的遗传效应分析. 中国农业科学, 2008, 41: 3845–3850Wei L M, Dai J R, Liu Z X, E L Z. Genetic effects of grain protein, starch and oil contents in maize. Sci Agric Sin, 2008, 41: 3845–3850 (in Chinese with English abstract)[13]高用明, 朱军, 宋佑胜, 何慈信, 石春海, 邢永忠. 水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析. 作物学报, 2004, 30: 849–854Gao Y M, Zhu J , Song Y S, He C X, Shi C H, Xing Y Z. Use of permanent F2 population to analyze epistasis and their interaction effects with environments for QTLs controlling heading date in rice. Acta Agron Sin, 2004, 30: 849–854 (in Chinese with English abstract)[14]胡霞, 石瑜敏, 贾倩, 徐琴, 王韵, 陈凯, 孙勇, 朱苓华, 徐建龙, 黎志康. 影响水稻穗部性状及籽粒碾磨品质的QTL及其环境互作分析. 作物学报, 2011, 37: 1175–1185Hu X, Shi Y M, Jia Q, Xu Q, Wang R, Chen K, Sun Y, Zhu L H, Xu J L, Li Z K. Analyses of QTLs for rice panicle and milling quality traits and their interaction with environment. Acta Agron Sin, 2011, 37: 1175–1185 (in Chinese with English abstract)[15]梁燕, 张坤普, 赵亮, 梁雪, 张雯婷, 孙晓琳, 孟庆伟, 田纪春, 赵世杰. 小麦苗期光合作用及其相关性状的QTL分析. 作物学报, 2010, 36: 267–275Liang Y, Zhang K P, Zhao L, Liang X, Zhang W T, Sun X L, Meng Q W, Tian J C, Zhao S J. Analysis of QTLs associated with photosynthesis characteristics in wheat seedlings. Acta Agron Sin, 2010, 36: 267–275 (in Chinese with English abstract)[16]周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005,38: 1951–1957Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin, 2005, 38: 1951–1957 (in Chinese with English abstract)[17]单大鹏, 朱荣胜, 陈立君, 齐照明, 刘春燕, 胡国华, 陈庆山. 大豆蛋白质含量相关QTL间的上位效应和QE互作效应. 作物学报, 2009, 35: 41–47Shan D P, Zhu R S, Chen L J, Qi Z M, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agron Sin, 2009, 35: 41–47 (in Chinese with English abstract)[18]单大鹏, 齐照明, 邱红梅, 单彩云, 刘春燕, 胡国华, 陈庆山. 大豆油分含量相关的QTL间的上位效应和QE互作效应. 作物学报, 2008, 34: 952–957Shan D P, Qi Z M, Qiu H M, Shan C Y, Liu C Y, Hu G H, Chen Q S. Epistatic effects and QE interaction effects of QTLs on oil content in soybean. Acta Agron Sin, 2008, 34: 952–957 (in Chinese with English abstract)[19]张晶莹, 葛一楠, 孙君明, 韩粉霞, 于福宽, 闫淑荣, 杨华. .多环境条件下大豆异黄酮主要组分的QTL定位. 中国农业科学, 2012,45: 3909–3920Zhang J Y, Ge Y N, Sun J M, Han F X, Yu F K, Yan S R, Yang H. Identification of QTLs for major isoflavone components among multiple environments in soybean seeds. Sci Agric Sin, 2012, 45: 3909–3920 (in Chinese with English abstract)[20]Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci, DOI: 2012, 10.1111/j.1744-7917.2012.01519.x[21]王珍, 方宣钧. 植物DNA分离. 分子植物育种, 2003, 1: 281–288Wang Z, Fang X J. Plant DNA isolation. Mol Plant Breed, 2003, 1: 281–288 (in Chinese with English abstract)[22]梁慧珍. 大豆子粒性状的遗传及QTL分析. 西北农林科技大学博士学位论文, 2006. pp 54–57Liang H Z. Genetic Analysis and QTL Mapping of Seed Traits in Soybean [Glycine max (L.) Merr]. PhD Dissertation of Northwest A&F University. 2008. pp 54–57 (in Chinese with English abstract)[23]Yang J, Zhu J. Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268−1274[24]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–14[25]李慧慧, 张鲁燕, 王建康. 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010, 36: 918−931Li H H, Zhang L Y, Wang J K. Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010, 36: 918−931 (in Chinese with English abstract)[26]翟虎渠, 王建康. 应用数量遗传. 北京: 中国农业科学技术出版社, 2007Zhai H Q, Wang J K. Applied Quantitative Genetics. Beijing: China Agricultural Science and Technology Press, 2007 (in Chinese)[27]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S. QTL × environment interactions in rice: I. heading date and plant height. Theor Appl Genet, 2003, 108: 141–153[28]Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Lander E S, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations, and environments. Genetics, 1991, 127: 181–197[29]杨喆, 关荣霞, 王跃强, 刘章雄, 常汝镇, 王曙明, 邱丽娟. 大豆遗传图谱的构建和若干农艺性状的QTL定位分析. 植物遗传资源学报, 2004, (4): 309–314Yang Z, Guan R X, Wang Y Q, Liu Z X, Chang R Z, Wang S M, Qiu L J. Construction of genetic map and QTL analysis for some agronomic traits in soybean. J Plant Genet Resour, 2004, (4): 309–314[30]Liao C Y, Wu P, Hu B, Yi K K. Effects of genetic background and environment on QTL and epistasis for rice (Oryza sativa L.) panicle number. Theor Appl Genet, 2001, 103: 104–111 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[15] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
|