欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (2): 239-245.doi: 10.3724/SP.J.1006.2009.00239

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

数量性状基因的完备区间作图方法

王建康   

  1. 中国农业科学院作物科学研究所/国家农作物基因资源与基因改良重大科学工程/CIMMYT中国办事处,北京100081
  • 收稿日期:2008-06-19 修回日期:2008-10-04 出版日期:2009-02-12 网络出版日期:2008-12-10
  • 通讯作者: 王建康
  • 基金资助:

    本研究由国家自然科学基金项目(30771351),国家高技术研究发展计划(863计划)项目(2006AA10Z1B1)资助

Inclusive Composite Interval Mapping of Quantitative Trait Genes

WANG Jian-Kang   

  1. Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences/CIMMYT China Office, Beijing 100081,China
  • Received:2008-06-19 Revised:2008-10-04 Published:2009-02-12 Published online:2008-12-10
  • Contact: WANG Jian-Kang

摘要:

结合分子标记和表型数据的QTL作图已成为数量性状遗传分析的常规方法。复合区间作图是近10多年来广泛应用的一种QTL定位方法,但它在算法上有一些缺陷,致使QTL效应可能会被侧连标记区间之外的标记变量吸收,同时不同的背景标记选择方法对作图结果的影响较大,并且难以推广到上位型互作QTL的定位。针对这些问题,笔者提出完备区间作图方法。本文介绍了该方法的遗传和统计原理,并通过一个大麦加倍单倍体群体说明其在定位加性QTL和加性×加性互作QTL中的应用。完备区间作图包含两个步骤:首先利用所有标记的信息,通过逐步回归选择重要的标记变量并估计其效应;然后利用逐步回归得到的线性模型校正表型数据,通过一维扫描定位加()性效应QTL,通过二维扫描定位上位型互作QTL。这种作图策略简化了复合区间作图中控制背景遗传变异的过程,提高了对QTL的检测功效。

关键词: 数量性状, QTL作图, 完备区间作图, 加显性效应, 上位型互作

Abstract:

Rapid increase in the availability of fine-scale genetic marker maps has led to the intensive use of QTL mapping in the genetic study of quantitative traits. Composite interval mapping (CIM) is one of the most commonly used methods for QTL mapping with populations derived from biparental crosses. However, the algorithm used in CIM cannot completely ensure that the effect of QTL at current testing interval is not absorbed by the background marker variables, and may result in biased estimation of QTL effect. We proposed a statistical method for QTL mapping, which was called inclusive composite interval mapping (ICIM). Two steps were included in ICIM. In the first step, stepwise regression was applied to identify the most significant regression variables. In the second step, a one-dimensional scanning or interval mapping was conducted for detecting additive (and dominance) QTL and a two-dimensional scanning was conducted for detecting digenic epistasis. ICIM provides intuitive statistics for testing additive, dominance and epistasis, and can be used for most experimental populations derived from two inbred parental lines. The EM algorithm used in ICIM has a fast convergence speed and is therefore less computing intensive. ICIM retains all advantages of CIM over interval mapping, and avoids the possible increase of sampling variance and the complicated background marker selection process in CIM. A doubled haploid (DH) population in barley was used to demonstrate the application of ICIM in mapping additive QTL and additive by additive interacting QTL.

Key words: Quantitative trait, QTL mapping, Inclusive composite interval mapping, Additive and dominance effects, Epistatic interaction

[1]Lynch M, Walsh B. Genetic and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates, 1998
[2]Zhai H-Q(翟虎渠), Wang J-K(王建康). Applied Quantitative Genetics (应用数量遗传). Beijing: China Agricultural Scientech Press, 2007 (in Chinese)
[3]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
[4]Broman K W, Speed T P. A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Statist Soc B, 2002, 64: 641-656
[5]Carlborg ?, Kerje S, Schütz K, Jacobsson L, Jensen P, Andersson L. A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res, 2003, 13: 413-421
[6]Doerge R W. Mapping and analysis of quantitative trait loci in experiment populations. Nat Rev Genet, 2002, 3: 43-52
[7]Feenstra B, Skovgaard I M, Broman K W. Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations. Genetics, 2006, 173: 2269-2282
[8]Sen S, Churchill G A. A statistical framework for quantitative trait mapping. Genetics, 2001, 159: 371-387
[9]Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203-1206
[10]Zhang Y, Xu S. A penalized maximum likelihood method for es-timating epistatic effects of QTL. Heredity, 2005, 95: 96-104
[11]Satagopan J M, Yandell B S, Newton M A, Osborn T C. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics, 1996, 144: 805-816
[12]Wang H, Zhang Y, Li X, Masinde G, Mohan S, Baylink D, Xu S. Bayesian shrinkage estimation of quantitative trait loci parame-ters. Genetics, 2005, 170: 465-480
[13]Xu S, Jia Z. Genome-wide analysis of epistatic effects for quanti-tive traits in barley. Genetics, 2007, 175: 1955-1963
[14]Frary A N, Nesbitt T C, Frary A M, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
[15]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767
[16]Wan X, Weng J, Zhai H, Wang J, Liu X, Guo T, Su N, Wan J. QTL analysis for rice grain width and fine mapping of an identi-fied QTL allele gw-5 in a recombination hotspot region on chro-mosome 5. Genetics, 2008, 179: 2239-2252
[17]Wang J, Wan X, Li H, Pfeiffer W, Crouch J, Wan J. Application of identified QTL-marker associations in rice quality improve-ment through a design breeding approach. Theor Appl Genet, 2007, 115: 87-100
[18]Wang J, Wan X, Crossa J, Crouch J, Weng J, Zhai H, Wan J. QTL mapping of grain length in rice (Oryza sativa L.) using chromo-some segment substitution lines. Genet Res, 2006, 88: 93-104
[19]Haley C S, Knott S A. A simple regression method for mapping quantitative loci in line crosses using flanking markers. Heredity, 1992, 69: 315-324
[20]Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[21]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361-374
[22]Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in bi-parental populations. Theor Appl Genet, 2008, 116: 243-260
[23]Zhang L, Li H, Li Z, Wang J. Interactions between markers can be caused by the dominance effect of QTL. Genetics, 2008, 180: 1177-1190
[24]Dempster A, Laird N, Rubin D. Maximum likelihood from incom-plete data via the EM algorithm. J Royal Stat Soc B, 1977, 39: 1-38
[25]Tinker N A, Mather D E, Rossnagel B G, Kasha K J, Kleinhofs A, Hayes P M, Falk D E, Ferguson T, Shugar L P, Legge W G, Irvine R B, Choo T M, Briggs K G, Ullrich S E, Franckowiak J D, Blake T K, Graf R J, Dofing S M, Saghai-Maroof M A, Scoles G J, Hoffman D, Dahleen L S, Kilian A, Chen F, Biyashev R M, Kudrna D A, Steffenson B J. Regions of the genome that affect agronomic performance in two-row barley. Crop Sci, 1996, 36: 1053-1062
[1] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[2] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[3] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[4] 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859.
[5] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[6] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[7] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[8] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[9] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析[J]. 作物学报, 2020, 46(10): 1517-1525.
[10] 蒙姜宇,傅鹰,贺亚军,钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL[J]. 作物学报, 2019, 45(9): 1338-1348.
[11] 童治军,张谊寒,陈学军,曾建敏,方敦煌,肖炳光. 雪茄烟品种Beinhart1000-1赤星病抗性基因的QTL定位[J]. 作物学报, 2019, 45(3): 477-482.
[12] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[13] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532.
[14] 贺亚军, 吴道明, 傅鹰, 钱伟. 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL[J]. 作物学报, 2018, 44(04): 533-541.
[15] 方雅洁,朱亚军,吴志超,陈凯,申聪聪,石英尧,徐建龙. 全基因组关联定位籼稻种质资源外观和加工品质QTL[J]. 作物学报, 2018, 44(01): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!