欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1161-1166.doi: 10.3724/SP.J.1006.2009.01161

• 研究简报 • 上一篇    下一篇

甘蔗中一个NBS-LRR类基因的全长克隆与表达分析

阙友雄,许莉萍*,张木清,张积森,陈如凯   

  1. 福建农林大学/农业部甘蔗遗传改良重点开放实验室,福建福州350002
  • 收稿日期:2008-09-13 修回日期:2008-12-13 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 许莉萍,E-mail:xlpmail@yahoo.com.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2007AA100701),农业部引进国际先进农业科学技术计划(948计划)项目(2006-G37),国家自然科学基金项目(30170639),福建省科技厅国家科技项目备案(F2007AA100701)资助。

Cloning and Expression Analysis of an NBS-LRR Type Gene from Sugarcane

QUE You-Xiong,XU Li-Ping*,ZHANG Mu-Qing,ZAHNG Ji-Sen,CHEN Ru-Kai   

  1. Key Laboratory of Sugarcane Genetic Improvement,Ministry of Agriculture,Fujian Agriculture and forestry University,Fuzhou 350002,China
  • Received:2008-09-13 Revised:2008-12-13 Published:2009-06-12 Published online:2009-04-16
  • Contact: XU Li-Ping,E-mail:xlpmail@yahoo.com.cn

摘要:

采用RACE技术, 从甘蔗高抗黑穗病品种NCo376中克隆了一个NBS-LRR类基因的cDNA全长序列, 命名为SNLR。生物信息学分析显示, 甘蔗SNLR基因的cDNA全长为2 985 bp (Accession No. EF155654), 包括一个2 661 bp的完整开放读码框以及一个典型的29 bp poly-A同时, 还具有NBS-LRR类抗病基因的所有保守结构域, 包括4NBS区域保守结构域和6个潜在LRR结构域;蛋白疏水性分析和二级、三级结构分析表明, 该基因编码的蛋白质为弱碱性蛋白, pI7.76, 无明显的疏水结构域, 卷曲结构和螺旋结构为骨架, 三级结构未见明显的跨膜信号蛋白区。定量PCR分析表明, 甘蔗SNLR基因的表达受到黑穗病菌、水杨酸和过氧化氢的影响, 分别表现出-全程抑制-的表达模式, 也具有抗病基因组成型和组织特异性表达的特点。推测甘蔗SNLR基因可能为抗病相关基因

关键词: 甘蔗, 分子克隆, 抗病基因, 定量PCR

Abstract:

In the present study, a non-TIR-NBS-LRR type disease-related gene was cloned by rapid amplification of cDNA ends (RACE) using the high-resistant sugarcane variety NCo376.This gene was termed as SNLR, with the GenBank accession No. of EF155648. The full-length cDNA sequence of SNLR is 2 985 bp, including an open reading frame (ORF) of 2661 bp and the typical 29 bp poly-A. The SNLR gene contained all the four typical conserved motifs of the NBS: P-loop (GMGGVGGKTT), Kinase-2 (LIVLDD), Kinase3a (GSR/KILVIIR) and hydrophobic region (GLPLAL), plus six putative LRR regions. It can be deduced from the hydrophobic character, secondary structure and 3D model analysis of the corresponding coding protein that the SNLR protein was alkalescent, with pI of 7.76 and without any obvious hydrophobic domain; coil and helices were the framework of secondary structure; no transmembrane region was found in its protein 3D model. The gene expression profile under the treatment ofU. scitaminea, SA and H2O2 wereinvestigated by Real-time qPCR. Results showed that expression ofsugarcane SNLR gene was influenced by the fungus, SA and H2O2, with the expression patterns of “down-up”, “down in the whole process” and “up-down”, respectively. It was inferred that expression of SNLR gene occurs both via an H2O2- and SA-dependent pathway. At the same time, SNLR gene was found to be expressed highly in leaves, mildly in stalks and slightly in roots, which indicated its relation to resistance in this aspect.

Key words: Sugarcane, Molecular cloning, Disease resistance gene, Real-time quantity PCR

[1] Brody J D, Roger W I. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol, 2006, 7: 1243-1249
[2] Meyers B C, Dickerman A W, Michelmore R W, Sivaramakrishnan S, Sobral B W, Young N D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J, 1999, 20: 317-332
[3] Dixon M S, Hatzixanthis K, Jones D A, Harrison K, Jones J D G. The tomato Cf-5 disease resistance geneand six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell, 1998, 10: 1915-1925
[4] Bent A F, Kankel B N, Dahlbeck D, Brown K L, Schmidt R, Giraudt J, Leung J, Staskawics B J. RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes. Science, 1994, 265: 185-1860
[5] Que Y-X(阙友雄), Xu L-P(许莉萍), Lin J-W(林剑伟), Chen R-K(陈如凯). Isolation and characterization of NBS-LRR resistance gene analogs from sugarcane. Acta Agron Sin (作物学报),2009, 35(4): 631-639(in Chinese with English abstract)
[6] Que Y X, Li W, Xu J S, Xu L P, Zhang M Q, Chen R K. A simple and versatile protocol for isolation of RNA from plant, fungi and animal. J Agric Sci Technol, 2008, 2(1): 63-63
[7] Lambert C, Leonard N, De Bolle X, Depiereux E. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002, 18: 1250-1256
[8] Bent A F. Plant disease resistance genes: Function meets structure. Plant Cell, 1996, 8: 1757-1771
[9] Baker B, Zambryski P, Staskawicz B, Dinesh-Kumar S P. Signaling in plant-microbe interaction. Science, 1997, 276: 726-733
[10] Yang S, Gu T, Pan C, Feng Z, Ding J, Hang Y, Chen J Q, Tian D. Genetic variation of NBS-LRR class resistance genes in rice lines. Theor Appl Genet, 2008, 116: 165-77
[11] Wang Y-H(王友红), Zhang P-F(张鹏飞), Chen J-Q(陈建群). Disease resistance genes and mechanisms in plants. Chin Bull Bot (植物学通报), 2005, 22(1): 92-99(in Chinese with English abstract)
[12] Klessing D F, Malamy J. The salicylic acid signal in plants. Plant Mol Biol, 1994, 26: 1439-1458
[13] Delaney T P, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J. A central role of Salicylic acid in plant disease resistance. Science, 1994, 266: 1247-1249
[14] Ajith A, Srinivasa R U, Choong-Min R, Stacy N A, Li K, Yuhong T, Kirankumar S M, Kumar D, Klessig D F. Salicylic acid and systemic acquired resistance play a role in attenuating crown gall disease caused by Agrobacterium tumefaciens. Plant Physiol, 2008,146: 703-715
[15] Metraux J P, Signer H, Ryais J, Ward E, Ryais J, Wyss-Benz M, Gaudin J, Racchdorf K, Schmid E, Blum W, Inverardi B. Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 1990, 250: 1004-1006
[16] Qi F-J(齐放军), Gao S-Q(高世强), Wu M-S(吴茂森), He C-Y(何晨阳). Analysis of synergetic induction of hypersensitive response by nitric oxide and hydrogen peroxide in rice suspension cultured cells. Sci Agric Sin (中国农业科学), 2006, 39(1): 61-65(in Chinese with English abstract)
[17] Wu G, Shortt B J, Lawrence E B,Levine E B, Fitzsimmons K C, Shah D M. Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell, 1995, 7: 1357-1368
[18] Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007, 176: 2541-2549
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[6] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[7] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[8] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[9] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[10] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[11] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[12] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[13] 张欢, 罗怀勇, 李威涛, 郭建斌, 陈伟刚, 周小静, 黄莉, 刘念, 晏立英, 雷永, 廖伯寿, 姜慧芳. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323.
[14] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[15] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!