欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1156-1160.doi: 10.3724/SP.J.1006.2009.01156

• 研究简报 • 上一篇    下一篇

表达大豆GMCHI基因能够提高原核生物对耐低温性

程立宝1,李淑艳3,景新明2,何光源1,*   

  1. 1华中科技大学中英HUST-RRes基因工程和基因组学联合实验室,教育部分子生物物理重点实验室,生命科学与技术学院,湖北武汉430074;2中国科学院植物研究所植物园,北京100093;3孝感学院生命科学与技术学院,湖北孝感432000
  • 收稿日期:2008-11-05 修回日期:2009-01-28 出版日期:2009-06-12 网络出版日期:2009-03-23
  • 通讯作者: 何光源,E-mail:hegy@hust.edu.cn;Tel:027-87792271
  • 作者简介:程立宝,E-mail:chenglibao453@163.com;Tel:027-87792271
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2002CB111302)资助。

Expression of GMCHI gene,isolated from Soybean,Enhances the Survival in Prokaryotes to Low Temperature Stress

CHENG Li-Bao1,LI Shu-Yan2,HE Guang-Yuan1*   

  1. 1China-UK HUST-RRes Genetics Engineering and Genomics Joint Laboratory,Huazhong University of Science Technology,Wuhan 430074,China;2Institute of Botany,Chinese Academy of Sciences,Beijing 100093,China;3Life Science and Technique College of Xiaogan University,Xiaogan432000,China
  • Received:2008-11-05 Revised:2009-01-28 Published:2009-06-12 Published online:2009-03-23
  • Contact: HE Guang-Yuan,E-mail:hegy@hust.edu.cn;Tel:027-87792271
  • About author:CHEN Li-Bao,E-mail:chenglibao453@163.com;Tel:027-87792271

摘要:

低温是种子萌发过程中常见的自然灾害,在我国北方经常发生,导致种子萌发率较差、降低植株活力等后果。利用cDNA-AFLP技术从低温(4)吸胀24 h的抗低温吸胀大豆品种中黄22 (低温吸胀24 h对萌发率无影响的品种)中分离出一个基因片段,命名为GMCHI (GenBank No. EU699765),通过RACE方法得到全长为387 bpcDNA序列。在NCBI数据库中的查询表明, GMCHI基因和数据库记录的基因序列同源性较低,因此可以断定GMCHI是在大豆中被发现的新基因。半定量RT-PCR显示GMCHIABAPEG诱导。该基因与PET30A连接后转入原核细胞,经过IPTG诱导,6% SDS-PAGE电泳条带说明,GMCHI在大肠杆菌中能够表达。把诱导表达和非诱导表达的菌落在–202 h后,移至37培养20 d,发现对照的菌落完全死亡,而诱导表达GMCHI的菌落只有部分死亡,并长出新菌落。RT-PCR检测表明新菌落携带GMCHI基因,证明GMCHI基因在大肠杆菌中的表达提高了低温耐性。

关键词: 大豆, GMCHI, 菌落, cDNA-AFLP, 基因

Abstract:

Low temperature during germination being a natural disaster usually occurs in North of China, which results in low germination rate and low seedling vigor, and even ultimately severe loss in yield. A gene was isolated from soybean Zhonghuang 22 cultivar (tolerant to low temperature in imbibition) for 24 h under 4℃ via cDNA-AFLP, name as GMCHI, GenBank accession No. EU699765. The full-length sequence of GMCHI which was 387 bp in nucleotide was obtained by RACE method. The sequence of gene shared low similarity with that of genes documented in NCBI, we inferred that GMCHI was a new discovered gene in soybean. Semi quantitative RT-PCR result revealed that GMCHI was induced by ABA and IPEG.. The gene ligated with Prokaryotic expression vector was transformed into prokaryotic cell, the result of 6% SDS-PAGE induced by IPTG was expressed in Prokaryotes. The E. coli carrying GMCHI survived and showed tolerance to low temperature under the treatment of 20℃ for 2 h. RT-PCR validated that GMCHI in Prokaryotes improved the adaptation to low temperature.

Key words: Soybean, GMCHI, E.coli, cDNA-AFLP, Gene


[1] Morris L L. Chilling Injury of Horticultural Crops. Hort Sci, 1982, 2: 161–171

[2] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599

[3] Rohde P, Hincha D K, Heyer A G. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Plant J, 2004, 38: 790–799

[4] Knight H, Veale E L, Warren G J, Knight M R. The sfr6 mutant of Arabidopsis is defective in transcriptional activation via CBF/DREB1 and DREB2 and shows sensitivity to osmotic stress. Plant J, 1999, 34: 395–406

[5] Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S I, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 2001, 25: 247–259

[6] Riera M, Valon C, Fenzi F, Giraudat J, Leung J. The genetics of adaptive responses to drought stress: Abscisic acid dependent and abscisic acid-independent signaling components. Physiol Plant, 2005, 123: 111–119

[7] Bramlage W J, Leopold A C, Parrish D T. Chilling stress to soybeans during imbibition. Plant Physiol, 1978, 61: 525–529

[8] Leopold A C. Temperature effect on soybean imbibition and leakage. Plant Physiol, 1980, 65: 1096–1098

[9] Julia B, Jean J L, Isabelle G, Benoit L V, Sylvie W M, Guillaume L, Alice L B N. Transcriptome profiling uncomers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation –tolerant stages in medicago truncatula seeds. Plant J, 2006, 47: 735–750

[10] Umezawa T, Mizuno K, Fujimura T. Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell Environ, 2002, 25: 1617–1625

[11] Liang P, Zhang C K, Robert C E, Fenny D, William A D. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene, 2005, 395: 111–118

[12] Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 2004, 45: 346–350

[13] Kirsten R, Jangle O, Sarah J G, Dainel G Z, Oliver S, Michael F T. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104–106

[14] Henriksson K N, Trewavas A J. The effect of short-term low-temperature treatment on gene expression in Arabidopsis correlates with change in intracellular Ca2+ levels. Plant Cell Environ, 2003, 26: 485–496

[15] Jonathan T, Vaniel G Z, Heather A, Van B, Sarah F, Michael F T. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcription of Arabidopsis. Plant J, 2005, 41: 195–211
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[3] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[4] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[5] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[6] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[7] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[8] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[9] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[10] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[11] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[12] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[13] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[14] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[15] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!