欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1151-1155.doi: 10.3724/SP.J.1006.2009.01151

• 研究简报 • 上一篇    下一篇

一个水稻雄性不育突变体的遗传分析和基因定位

初明光,李双成**,王世全,邓其明,张婧,丁磊,文勇,郑爱萍,周星宇,李平*   

  1. 四川农业大学水稻研究所,四川温江611130
  • 收稿日期:2009-01-12 修回日期:2009-03-23 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 通讯作者: 李平,E-mail:liping6575@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(30800084)和国家高技术研究发展计划(863计划)项目(2006AA10A103)资助。

Genetic Analysis and Molecular Mapping of a Male Sterile Mutant in Rice

CHU Ming-Guang,LI Shuang-Cheng**,WANG Shi-Quan,DENG Qi-Ming,ZHANG Jing,DING Lei,WEN Yong,ZHENG Ai-Ping,ZHOU Xing-Yu,LI Ping   

  1. Rice Research Institute,Sichuan Agricultural University,Wenjiang 611130,China
  • Received:2009-01-12 Revised:2009-03-23 Published:2009-06-12 Published online:2009-04-16
  • Contact: LI Ping,E-mail:liping6575@163.com

摘要:

ms-np是一个源于自然突变的水稻雄性不育突变体,明显较正常植株矮小,叶色浓绿。小花解剖观察发现,突变体小花花丝细长,花药干瘪,呈白色透明状,但雄性器官的数量和雌性器官正常。碘染证实,突变体的花药壁内没有花粉粒着色,是一个典型的无花粉型雄性不育材料。5F22BC1F1群体的遗传分析显示,该突变性状受1对隐性基因控制。对组合ms-np/M63衍生F2不育单株的连锁分析表明,ms-np(t)基因位于水稻第6 染色体微卫星标记RM541RM343之间,遗传距离分别为15.2 cM7.9 cM

关键词: 水稻, 雄性不育, 遗传分析, 基因定位

Abstract:

Male sterility is an important inheritance phenomenon in plants and widely used in hybrid seed production. The male sterile plant can't produce normal male gametophyte for reproduction, while the female counterpart is normal. So far, more than 100 of male sterile mutants or genes have been reported in rice. Ms-np is a male-sterile mutant derived from a spontaneous mutation. The filaments of the mutant are long and thin, and the withered anthers are white and transparent. Ms-np was confirmed to be a none-pollen type mutant of male sterility, for no pollen grains were stained with I2-KI solution and the anther locules were always hollow. Genetic analysis of five F2 populations and two BC1F1 populations revealed that the mutation was controlled by a single recessive gene. To uncover the molecular basis of ms-np, the F2 population derived form the cross of ms-np/M63 was used for genetic mapping. Screening of 227 F2 mutant individuals with simple sequence repeat (SSR) markers indicated that ms-np(t) was located between the molecular markers RM541 and RM343, on chromosome 6, with the distances of 15.2 and 7.9 cM, respectively. The results provide a basis for further gene cloning and understanding of the molecular mechanism underlying rice male fertility.

Key words: Rice, Male sterility, Genetic analysis, Mapping

[1] Ma H. Molecular genetic analysis of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol, 2005, 56: 393-434
[2] Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. Cloning and characterization of Ms5 from Arabidopsis: A gene critical in male meiosis. Plant, 1998, 15: 345-356
[3] Kinoshita T. Gene symbols and information on male sterility. Rice Genet Newsl, 1997, 14: 13-22
[4] Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci, 1998, 3: 175-180
[5] Aarts M G M, Dirkse W G, Stiekema W J, Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature, 1993, 363: 715-717
[6] Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY1(MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant, 2001, 28: 27-39
[7] Xu H, Knox R B, Taylor P E, Sinhg M B. Bcp1, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA,1995, 92: 2106-2110
[8] Cigan A M, Unger E, Xu R J, Kendall T, Fox T W. Phenotypic complementation of ms45 maize requires tapetal expression of MS45. Sex Plant Reprod, 2001, 14: 135-142
[9] Ross K J, Fransz P, Armstrong S J, Vizir I, Mulligan B, Franklin F C H, Jones G H. Cytological characterization of four meiotic mutant of Arabidopsis isolated from T-DNA transformed lines. Chromosome Res, 1997, 5: 551-559
[10] Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, An G. Rice undeveloped tapetum1 is a major regulator of early tapetum development. Plant Cell, 2005, 17: 2705-2722
[11] Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 1999, 11: 431-443
[12] Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell, 2003, 15: 1728-1739

[13] Zhu Q H, Ramm K, Shivakkumar R, Dennis E S, Upadhyaya N M. The ANTHER INDEHISCENE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol, 2004, 135: 1514-1525

[14] Miyuki K, Yoshiaki I, Miyako U T, Hironori I, Takeshi I, Yuhko K, Tsukaho H, Akio M, Hirohiko H, Motoyuki A, Makoto M. Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell, 2004, 16: 33-44
[15] Lu X-G(卢兴桂), Gu M-H(顾铭洪). The Principles and Techniques of Two-Line Hybrid Rice (两系杂交水稻理论与技术). Beijing: Science Press, 2001 (in Chinese)
[16] Tan X L, Vnavichit A, Amornsilpa S, Trangoonrung S. Mapping of rice Rf gene by bulked line analysis. DNA Res, 1998, 5: 15-18
[17] Norio I, Noaki K, Akiko I, Atsushi N, Yoko K, Yumi Y, Masaaki O, Shiro S, Hiromori A, Kenichi H, Choyu S, Tatsuhito F, Hiroaki S. A rapid PCR-aided selection of a rice line containing the Rf-1 gene which is involved in restoration of the cytoplasmic male sterility. Mol Breed, 1997, 3: 195-202
[18] Liang G-H(梁国华), Yan C-J(严长杰), Tang S-Z(汤述翥). Molecular location of a fertility restorer gene for BT type CMS rice. Chin J Rice Sci (中国水稻科学), 2001, 15(2): 89-92 (in Chinese with English abstract)
[19] Bharaj T S, Bains S S, Sidhu G S, Gagneja M R. Genetics of fertility restoration of ‘wild abortive’ cytoplasmic male sterility in rice. Euphytica, 1991, 56: 199-203
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!