欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (05): 721-727.doi: 10.3724/SP.J.1006.2010.00721

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

人工合成小麦CI191抗条锈病基因的鉴定及分子标记定位

任强1,2,刘慧娟1,**,陈洋1,徐世昌3,何名召1,辛志勇1,张增艳1,*   

  1. 1中国农业科学院作物科学研究所/农作物基因资源与基因改良国家重大科学工程/农业部作物遗传育种重点开放实验室,北京100081;2甘肃农业大学农学院,甘肃兰州730070;3中国农业科学院植物保护研究所/植物病虫害生物学国家重点实验室,北京100193
  • 收稿日期:2009-11-24 修回日期:2010-02-07 出版日期:2010-05-12 网络出版日期:2010-03-15
  • 通讯作者: 张增艳, E-mail: zhangzy@mail.caas.net.cn; Tel: 010-82108781
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100102,2006AA10Z1C7)和引进国际先进农业科学技术计划(948计划)项目(2006-G2)资助。

Molecular Tagging of a Stripe Rust Resistance Gene in a Triticum durumAegilops squarrosa Synthetic Wheat CI191

REN Qiang1,2,LIU Hui-Juan1,**,CHEN Yang1,XU Shi-Chang3,HE Ming-Zhao1,XIN Zhi-Yong1,ZHANG Zeng-Yan1*   

  1. 1 National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Crop Genetic and Breeding, Ministry of Agriculture / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2 College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 3 Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, China
  • Received:2009-11-24 Revised:2010-02-07 Published:2010-05-12 Published online:2010-03-15
  • Contact: ZHANG Zheng-Yan,E-mail: zhangzy@mail.caas.net.cn; Tel: 010-82108781

摘要:

抗病性鉴定结果表明,硬粒小麦–粗山羊草人工合成小麦CI191(CPI/GEDIZ/3/GOO//JO69/CRA/4/AE.SQ629),对我国曾经或现在流行的小麦条锈菌生理小种 CY28、CY29、CY30、CY31、CY32和水源11致病类型4表现免疫或近免疫。基因推导结果显示,CI191对条锈菌的反应型不同于24份已知抗条锈病基因品种(系),对21个条锈菌生理小种表现抗性,对条锈病菌生理小种86107表现感病反应型(IT 3)。对CI191/铭贤169杂交组合的正交、反交的F1材料以及F2代群体进行抗病鉴定与遗传分析,结果表,,CI191对条锈菌小种CY31的抗性受细胞核内的显性单基因控制。利用集群分离分析法(BSA)和简单重复序列(SSR)分子标记分析,发现7个SSR标记与YrC191连锁。构建了包含YrC191的SSR标记遗传图谱,其中Xbarc240YrC191共分离,Xcfd65Xbarc187Xgwm18Xgwm11位于Xbarc8YrC191的同侧,与YrC191间遗传距离3.2 cM,Xbarc8YrC191间遗传距离为1.6 cM,Xwmc419位于YrC191另一侧、遗传距离为3.1 cM。根据SSR分子标记的遗传图谱和在中国春的缺体-四体和双端体的定位结果,将YrC191定位到小麦染色体1BS上。YrC191基因的4个SSR标记和Yr26的1个STS标记可以明显地区分YrC191与染色体1BS上的其他抗条锈病基因,如Yr24Yr26/YrCH42Yr10Yr15 YrC142等。

关键词: 合成小麦, 条锈病抗性基因, 基因推导, 遗传分析, SSR标记

Abstract:

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most serious fungal diseases in wheat worldwide. To diversify the resistance resources, a resistance synthetic wheat CI191 (CPI/GEDIZ/3/GOO//JO69/CRA/ 4/AE.SQ629) has been mined from 94 accessions of Triticum durum-Aegilops squarrosa synthetic wheat introduced from CYMMT. CI191 show highly resistant to six Pst races prevailing in Chinese, such as CY28, CY29, CY30, CY31, CY32, and CY-Su11-4. Based on the responses of CI191 nd 24 wheat materials possessing known stripe rust resistance genes to 22 Pst races, we postulated CI191 was different from all the known resistant genes. According to analysis of inherited mode, the resistance gene in CI191 was controlled by a single dominate gene, tentatively designated YrC191. Using the cross between CI191 and Mingxian 169 (a sensitive wheat cultivar to Pst races), the F2 segregation population and the bulked segregant pools were established to screen the the simple sequence repeat (SSR) markers linked to YrC191. Seven SSR markers were found to be linked with YrC191 in the alignment of Xwmc419-YrC191/ Xbarc240-Xbarc8-Xcfd65/Xbarc187/Xgwm18/Xgwm11. YrC191 was cosegrated withthe marker Xbarc240, flanked by the closest linked markers Xbarc8 and Xwmc419 with the relative genetic distances of 1.6 cM and 3.1 cM, respectively. Using Chinese Spring nullisomic-tetrasomics and ditelosomic lines of homoeologous group 1, Xcfd65, Xgwm18, Xgwm11, Xbarc187, and Xwmc419 markers were physically mapped on the chromosome arm 1BS, and YrC191 was also located on 1BS. Four SSR markers linked tightly with YrC191 and 1 sequence tagged site (STS) marker for Yr26 could discriminate YrC191 from the other resistant genes on 1BS, such as Yr24, Yr26, Yr10, Yr15, YrCH42, and YrC142. The resusltes suggested that YrC191 may be a novel resistance gene to Pst.

Key words: Triticum durum/Aegilops tauschii synthetic wheat, stripe rust, resistance gene, gene postulation, SSR marker

[1] Xie H(谢皓), Niu Y-C(牛永春), Chen X(陈孝), Ma Y-Z(马有志), Wu L-R(吴立人), Lin Z-S(林志珊). Assessment and genetic analysis on the resistance of a new wheat line YW243 to stripe rust. Acta Phytopathol Sin (植物病理学报), 2003, 33(3): 243–247 (in Chinese with English abstract)

[3] Fang T L(房体麟), Cheng Y(程颖), Li G-Q(李根桥), Xu S-C(徐世昌), Xie C-J(解超杰), You M-S(尤明山), Yang Z-M(杨作民), Sun Q-X(孙其信), Liu Z-Y(刘志勇).Molecular characterization of a stripe rust resistance gene from wheat line S2199 and its allelism with Yr5[J].Acta Agron Sin(作物学报.2008, 34(3):355-

[4] McIntosh R A, Yamazaki Y, Devos K M, Dubcovsky J, Rogers W J, Appels R. Catalogue of gene symbols for wheat. In: Pogna N E, Romano N, Pogna E A, Galterio G, eds. Proceedings of the Tenth International Wheat Genetics Symposium. Vol. 4. Rome: Istituto Sperimentale per la Cerealcoltura, 2003. p 8

[5] McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat: 2007 supplement. http://www.wheat.pw.usda.gov/ggpages/macgene/supplement2007.htm

[6] Zhang H(张宏), Ren Z-L(任志龙), Hu Y-G(胡银岗), Wang C-Y(王长有), Ji W-Q(吉万全). Characterization of Wheat Stripe Rust Resistance Genes in Shaanmai 139[J].Acta Agron Sin (作物学报.2010, 36:109-114

[7] Mujeeb-Kazi A, Rosas V, Roland S. Conservation of the genetic variation of Triticum Tauschii (Coss[J].) Schmalh. (Aegilops aquarrosa L.) in synthetic hexaploid wheats (T.turgidum L. × T. tauschii, 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Reours Crop Evol

[8] Multani D S, Daliwal H S, Singh P, Gill K S. Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breed, 100: 122-125

[9] Mujeeb-Kazi A, Fuentes-Davila G, Villareal R L, Cortes A, Rosas V, Delgado R. Registration of 10 synthetic hexaploid wheat and six bread wheat germplasms resistant to Karnal bunt. Crop Sci, 41: 1652-1653

[10] Singh R P, Mujeeb-Kazi A, Huerta-Espino J. Lr46: A gene conferring slow-rusting resistance to leaf rust in wheat[J].Phytopathology

[11] Ma H, Singh R P, Mujeeb-Kazi A. Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica, 1995, 82: 117-124

[12] Ma H, Singh R P, Mujeeb-Kazi A. Resistance to stripe rust in durum wheats, A-genome diploids and their amphiloids[J].Euphytica

[13] Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26[J].Theor Appl Genet

[14] Wang L M, Zhang Z Y, Liu H J, Xu S C, He M Z, Liu H X, Veisz O, Xin Z Y. Identification, gene postulation and molecular tagging of a stripe rust resistance gene in synthetic wheat CI142[J].Cereal Res Commun

[15] Li T(李韬), Zhang Z-Y(张增艳), Lin Z-S(林志珊), Chen X(陈孝), Gao S(高珊), Xin Z-Y(辛志勇). Mapping of a novel gene conferring resistance to wheat powdery mildew using AFLP and SSR markers. Acta Agron Sin (作物学报), 2005, 31: 1105-1109 (in Chinese with English abstract)

[16] Shao Y T, Niu Y C, Zhu L H, Zhai W X, Xu S C, Wu LR. Identification of an AFLP marker linked to the stripe rust resistance gene Yr10 in wheat[J].Chin Sci Bull

[17] Wang L F, Ma J X, Zhou R H, Wang X M, Jia J Z. Molecular tagging of the yellow rust resistance gene Yr10 in common wheat, P.I. 178383 (Triticum aestivum L.). Euphytica, 2002, 124: 71-73

[18] Wen W E, Li G Q, He Z H, Yang W Y, Xu M L, Xia X C. Development of an STS marker tightly linked to Yr26 against wheat stripe rust using the resistance gene-analog polymorphism (RGAP) technique. Mol Breed, 2008 22: 507-515

[19] Niu Y-C(牛永春), Qiao Q(乔奇), Wu L-R(吴立人). Postulation of resistance genes to stripe rust in commercial wheat cultivars from Henan, Shandong and Anhui provinces. Phytopathol Sin (植物病理学报), 2000, 30(2): 122-128 (in Chinese with English abstract)

[20] Sharp P G, Kreis M, Shewry P R, Gale M D. Location of β-amylase sequence in wheat and its relatives. Theor Appl Genet, 1988, 75: 289-290

[21] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[22] Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L[J].). Theor Appl Genet

[23] Lincoln S, Daly M, Lander E. Constructing Genetic Maps with Mapmaker/EXP3.0. Whitehead Institute Techn Rep, 3rd Edn. Whitehead Institute, Cambridge, Masachussetts, USA. 1992

[24] Kosambi D D. The estimation of map distances from recombination values. Ann Eugen, 1944, 12: 172-175

[25] He M-Z(何名召), Wang L-M(王丽敏), Zhang Z-Y(张增艳), Xu S-C(徐世昌), Xin Z-Y(辛志勇). Identification and molecular mapping of a novel stripe rust resistancegene in a Triticum durum-Aegilops tauschii Amphiloid CI108. Acta Agron Sin(作物学报), 33: 1045-1050 (in Chinese with English abstract)

[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[8] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[9] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[10] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[11] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[12] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[13] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[14] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
[15] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!