欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 255-262.doi: 10.3724/SP.J.1006.2011.00263

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

川麦42中源于人工合成小麦的一个高产位点鉴定

李俊1,魏会廷2,胡晓蓉1,李朝苏1,汤永禄1,刘登才3,4,杨武云1,*   

  1. 1四川省农业科学院作物研究所, 四川成都 610066; 2 四川省农业科学院植物保护研究所, 四川成都 610066; 3 四川农业大学小麦研究所, 四川温江 611130; 4 中国科学院西北高原生物研究所高原生物适应与进化重点实验室, 青海西宁 810001
  • 收稿日期:2010-06-02 修回日期:2010-08-04 出版日期:2011-02-12 网络出版日期:2010-11-12
  • 通讯作者: 杨武云, E-mail: yangwuyun@yahoo.com.cn, Tel: 028-84504657
  • 基金资助:

    本研究由国家自然科学基金项目(30771338, 30871532), 国家科技支撑计划项目(2006BAD13B02-03, 2006BAD01A02), 国家高技术研究发展计划(863计划)项目(2006AA10Z1C6), 国家小麦产业技术体系项目, 四川省育种攻关项目, 四川省应用基础项目和四川省财政育种优秀论文基金资助。

Identification of a High-Yield Introgression Locus from Synthetic Hexaploid Wheat in Chuanmai 42

LI Jun1,WEI Hui-Ting2,HU Xiao-Rong1,LI Chao-Su1,TANG Yong-Lu1,LIU Deng-Cai3,4,YANG Wu-Yun1,*   

  1. 1 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 2 Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; 3 Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; 4 Northeast Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China
  • Received:2010-06-02 Revised:2010-08-04 Published:2011-02-12 Published online:2010-11-12
  • Contact: YANG Wu-Yun, E-mail: yangwuyun@yahoo.com.cn, Tel: 028-84504657

摘要: 人工合成小麦是改良现代小麦的重要基因资源。川麦42是人工合成小麦与普通小麦杂交育成的高产、抗条锈、广适小麦新品种。利用小麦全基因组的1029个SSR标记扫描,检测了川麦42遗传背景中人工合成小麦导入位点,并利用川麦42与四川小麦品种川农16构建的127个重组自交系(RIL, F8),在4年6个环境下种植获得的农艺性状数据,分析了人工合成小麦导入位点对小麦产量和产量构成因子的遗传效应,在川麦42遗传背景中发现一个高产的人工合成小麦导入位点Barc1183。根据Barc1183分子标记,将RIL群体中的127个株系分为川麦42基因型(具人工合成小麦导入位点)和川农16基因型(具川农16位点)两组,前者的人工合成小麦导入位点能促进分蘖能力,提高有效穗数、每平方米粒数,增加收获指数、籽粒生产率,在4年6个环境下较后者平均增产达8.92%,Barc1183为一高产的人工合成小麦导入位点。利用中国春双端体和硬粒小麦Longdon的D染色体代换系验证,将其定位于小麦4D染色体长臂。川麦42遗传背景中的高产人工合成小麦导入位点Barc1183,对于进一步开展小麦高产育种研究具有重要价值。

关键词: 川麦42, 人工合成小麦, 导入位点, 高产

Abstract: Synthetic hexaploid wheat, a carrier of many elite genes, is an important genetic resource in the improvement of common wheat (Triticum aestivum L.). Chuanmai 42 is a wheat cultivar with high-yield potential and resistance to strip rust(Puccinia striiformis f. sp. tritici), which was developed by crossing and backcrossing Syn769 (an elite synthetic hexaploid wheat) with Sichuan commercial wheat cultivars. For understanding the genetic effects of the introgression loci of synthetic hexaploid wheat in Chuanmai 42, a total of 78 introgression loci of synthetic hexaploid wheat were identified in Chuanmai 42 by scanning using 1029 SSR markers. Using 127 recombinant inbred lines (RILs, F8) with Chuanmai 42 (introgression loci) and Chuannong 16 (Chuannong 16 loci) backgrounds, the genetic effects of the introgression loci were evaluated across six environments in Sichuan Province, China from 2006 to 2009. One high-yield potential locus Barc1183 derived from the synthetic hexaploid wheat was detected in Chuanmai 42. It was further located on the long arm of 4D chromosome using the 4DS and 4DL telosomic lines of Chinese Spring and the 4D(4A) and 4D(4B) substitution lines of Longdon. This locus had positive effects on increasing tiller number per plant, number of effective spikes, grain number per square meter, harvest index, and grain production rate, and the average yield was increased by 8.92% compared with Chuannong 16 in the six growing environments. Therefore, the introgression locus Barc1183 of synthetic hexaploid wheat can be useful for breeding high-yield potential wheat.

Key words: Chuanmai 42, Synthetic hexaploid wheat, Introgression loci, High yield

[1]Feldman, M. Origin of cultivated wheat. In: Bonjean, A P, Angus, W J, eds. The World Wheat Book: A History of Wheat Breeding. Paris: Lavoisier Publishing Inc., 2001. pp 3-56
[2]Van Ginkle M, Francis O. Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res, 2007, 104: 86-94
[3]David H, Mireille K, Timothy R, Jean M R, Bent S, Suketoshi T, Marilyn W. Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci, 1999, 96: 5937-5943
[4]Mujeeb-Kazi A, Rosas V, Roldan S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. S. lat. × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Resour Crop Evol, 1996, 43: 129-134
[5]Lan X-J(兰秀锦), Yan J(颜济). An amphidiploid derived from a Chinese landrace of tetraploid wheat, Ailanmai crossed with Aegilops tauschii native to China and with reference to its utilization in wheat breeding. J Sichuan Agric Univ (四川农业大学学报), 1992, 10(4): 581-585 (in Chinese with English abstract)
[6]Xu S-J(许树军), Dong Y-C(董玉琛). Cytogenetic study on the formation of amphiploids in the F1 hybrids of Triticum carthlicum Nevski var.darginicum and Aegilops tauschii Cosson. Acta Agron Sin (作物学报), 1989, 15(3): 251-259 (in Chinese with English abstract)
[7]Liu S B, Zhou R H, Dong Y C, Li P, Jia J Z. Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet, 2006, 112: 1360-1373
[8]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766
[9]Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006, 112: 787-796
[10]Liao X-Z(廖祥政), Wang J(王瑾), Zhou R-H(周荣华), Ren Z-L(任正隆), Jia J-Z(贾继增). Mining favourable alleles of QTLs conferring 1000-grain weight from synthetic wheat. Acta Agron Sin (作物学报), 2008, 34(11): 1877-1884 (in Chinese with English abstract)
[11]Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agri Sin (中国农业科学), 2009, 42(5): 1503-1511 (in Chinese with English abstract)
[12]Yang W Y, Liu D C, Li J, Zhang L Q, Wei H T, Hu X R, Zheng Y L, He Z H, Zou Y C. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009, 36: 539-546
[13]Zhang Y(张颙), Yang W-Y(杨武云), Hu X-R(胡晓蓉), Yu Y(余毅), Zou Y-C(邹裕春), Li Q-M(李青茂). Analysis of agronomic characters of new wheat variety Chuanmai 42 derived from synthetics (Triticum durum ´ Aegilops tauschii). Southwest China J Agric Sci (西南农业学报), 2004, 17(2):141-145 (in Chinese with English abstract)
[14]Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 2007, 156: 1-13
[15]Maxted N, Kell S P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs. FAO Commission on Genetic Resources for Food and Agriculture, Rome, Italy. 2009, p 24
[16]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023
[17]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697
[18]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114
[19]Song Q J, Shi J R, Singh S, Fickus E W, Costa J M, Lewis J, Gill B S, Ward R, Cregan P B. Development and mapping of microsatellite (SSR) marker in wheat. Theor Appl Genet, 2005, 110: 550-560
[20]Dreccer M F, Borgognone M G, Ogbonnaya F C, Trethowan R M, Winter B. CIMMYT-selected derived synthetic bread wheat for rain fed environments: yield evaluation in Mexico and Australia. Field Crops Res, 2007, 100: 218-228
[21]Ogbonnaya F C, Ye G Y, Trethowan R, Dreccer F, Lush D, Shepperd J, van Ginkel M. Yield of synthetic backcross-derived lines in rain fed environments of Australia. Euphytica, 2007, 3: 321-336
[22]Del Blanco I A, Rajaram S, Kronstad W E. Agronomic potential of synthetic hexaploid wheat derived populations. Crop Sci, 2001, 41: 670-676
[23]Huang X Q, Coster H, Ganal M W, Röder M S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet, 2003, 106: 1379-1389
[24]Kato K, Miura H, Sawada S. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet, 2000, 101: 1114-1121
[25]Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田纪春). QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin (作物学报), 2009, 35(2): 270-278 (in Chinese with English abstract)
[26]Groos C, Robert N, Bervas E, Charmet G. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet, 2003, 106: 1032-1040
[27]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883
[28]Marza F, Bai G H, Carver B Y, Zhou W C. Quantitative trait loci for yield and related traits in the wheat population Ning 7840 × Clark. Theor Appl Genet, 2006, 112: 688-698
[29]Kumar K, Kulwal P L, Balyan H S, Gupta P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 167-177
[30]Snape J W, Foulkes M J, Simmonds J, Leverington M, Fish L J, Wang Y K, Ciavarrella M. Dissecting gene 3 environmental effects on wheat yields via QTL and physiological analysis. Euphytica, 2007, 154: 401-408
[31]Li S S, Jia J Z, Wei X Y, Zhang X C, Li L Z, Chen H M, Fan Y D, Sun H Y, Zhao X H, Lei T D, Xu Y F, Jiang F S, Wang H G, Li L H. An intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed, 2007, 20: 167-178
[32]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325
[33]Börner A, Schumann E, Furste A, Coster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936
[34]Liao J(廖杰), Wei H-T(魏会廷), Li J(李俊), Yang Y-M(杨玉敏), Zeng Y-C(曾云超), Peng Z-S(彭正松),Yang W-Y(杨武云). Detection of the introgression loci of synthetic hexaploid wheat in wheat cultivar Chuanmai 42 by SSR markers. Acta Agron Sin (作物学报), 2007, 33(5): 703-707 (in Chinese with English abstract)
[35]Li J(李俊), Wei H-T(魏会廷), Yang S-J(杨粟洁), Li C-S(李朝苏), Tang Y-L(汤永禄), Hu X-R(胡晓蓉), Yang W-Y(杨武云). Genetic effects of 1BS chromosome arm on the main agronomic traits in Chuanmai 42. Acta Agron Sin (作物学报), 2009, 35(12): 2167-2173 (in Chinese with English abstract)
[36]Li G Q, Li Z F, Yang W Y, Zhang Y, He Z H, Xu S C, Singh R P, Qu Y Y, Xia X C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet, 2006, 112: 1434-1440
[37]Sourdille P, Cadalen T, Guyomarc’h H, Snape J W, Parretant M R, Charmet G, Boeuf C, Bernard S, Bernard M. An update of the Courlot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet, 2003, 106: 530-538
[38]Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet, 2005, 110: 865-880
[39]Kuchel H, Williams K, Langridge P, Eagles H A, Jefferies S P. Genetic dissection of grain yield in bread wheat: II. QTL-by-environment interaction. Theor Appl Genet, 2007, 115: 1015-1027
[1] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[2] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565.
[3] 周磊,刘秋员,田晋钰,朱梦华,程爽,车阳,王志杰,邢志鹏,胡雅杰,刘国栋,魏海燕,张洪程. 甬优系列籼粳杂交稻产量及氮素吸收利用的差异[J]. 作物学报, 2020, 46(5): 772-786.
[4] 李朝苏,吴晓丽,汤永禄,李俊,马孝玲,李式昭,黄明波,刘淼. 小麦产量对中后期氮素胁迫的响应及品种间差异[J]. 作物学报, 2019, 45(8): 1260-1269.
[5] 朱盈,徐栋,胡蕾,花辰,陈志峰,张振振,周年兵,刘国栋,张洪程,魏海燕. 江淮优良食味高产中熟常规粳稻品种的特征[J]. 作物学报, 2019, 45(4): 578-588.
[6] 周宝元,马玮,孙雪芳,丁在松,李从锋,赵明. 冬小麦-夏玉米高产模式周年气候资源分配与利用特征研究[J]. 作物学报, 2019, 45(4): 589-600.
[7] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[8] 李法计,徐学欣,肖永贵,何中虎,王志敏. 不同氮素处理对中麦175和京冬17产量相关性状和氮素利用效率的影响[J]. 作物学报, 2016, 42(12): 1853-1863.
[9] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的氮素积累、分配与利用特征[J]. 作物学报, 2016, 42(09): 1363-1373.
[10] 寇春兰,赵来宾,刘梦,郝明,甯顺腙,袁中伟,刘登才,张连全*. 小麦未减数配子基因的连锁标记及染色体区段检测[J]. 作物学报, 2016, 42(07): 984-989.
[11] 李朝苏,吴晓丽,汤永禄,杨武云,吴元奇,吴春,马孝玲,李式昭. 四川近十年小麦主栽品种的品质状况[J]. 作物学报, 2016, 42(06): 803-812.
[12] 韦还和,孟天瑶,李超,张洪程,戴其根,马荣荣,王晓燕,杨筠文. 水稻甬优12产量13.5 t hm-2以上超高产群体的磷素积累、分配与利用特征[J]. 作物学报, 2016, 42(06): 886-897.
[13] 田青兰,李培程,刘利,张强,任万军. 四川不同生态区高产栽培条件下的杂交籼稻的稻米品质[J]. 作物学报, 2015, 41(08): 1257-1268.
[14] 丁锦峰, 黄正金, 袁毅, 朱新开, 李春燕, 彭永欣, 郭文善. 稻–麦轮作下9000 kg hm–2产量水平扬麦20的群体质量及花后光合特征[J]. 作物学报, 2015, 41(07): 1086-1097.
[15] 韦还和,李超,张洪程,孙玉海,马荣荣,王晓燕,杨筠文,戴其根,霍中洋,许轲,魏海燕,郭保卫. 水稻甬优12不同产量群体的株型特征[J]. 作物学报, 2014, 40(12): 2160-2168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!