欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 263-270.doi: 10.3724/SP.J.1006.2011.00263

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

对中国南方部分籼型杂交水稻纹枯病抗性的评价

王玲1,黄雯雯1,2,刘连盟1,傅强1,黄世文1,2,*   

  1. 1中国水稻研究所,浙江杭州 310006;2广西大学农学院,广西南宁 530003
  • 收稿日期:2010-07-09 修回日期:2010-07-20 出版日期:2011-02-12 网络出版日期:2010-11-16
  • 通讯作者: 黄世文, E-mail: shiwenhuang666@yahoo.com.cn, Tel: 0571-63370312
  • 基金资助:

    本研究由国家公益性行业(农业)科研专项经费项目(nyhyzx3-16), 中央级公益性科研院所基本科研业务费专项基金项目(2009RG004-4), 浙江省三农五方科技协作计划项目(SN200711)和国家科技支撑计划项目(2006BAD08A04)资助。

Evaluation of Resistance to Sheath Blight (Rhizoctonia solani) in Some Indica Hybrid Rice from Southern China

WANG Ling1,HUANG Wen-Wen1,2,LIU Lian-Meng1,FU Qiang1,HUANG Shi-Wen1,2,*   

  1. 1 China National Rice Research Institute, Hangzhou 310006, China; 2 Agricultural College, Guangxi University, Nanning 530003, China
  • Received:2010-07-09 Revised:2010-07-20 Published:2011-02-12 Published online:2010-11-16
  • Contact: HUANG Shi-Wen,E-mail:shiwenhuang666@yahoo.com.cn, Tel: 0571-63370312

摘要: 由立枯丝核菌引起的水稻纹枯病是世界性的水稻严重病害之一,且在育种和生产上可利用的抗病种质极少,迫切需要发掘抗源。本研究鉴定了来自中国南方11个省(市、自治区)的166个籼型杂交稻组合对纹枯病菌的苗期抗性。未发现免疫或高抗的组合,但不同组合间的抗性差异极显著,平均病情指数符合正态分布N(5.27,0.682),变化幅度为2.84~7.64。根据动态聚类分析,参试组合被划分为抗、中抗、中感、感和高感5级,分别占总数的1.20%、13.86%、36.14%、43.37%和5.42%。参试的大多数组合为感病,仅K优88和中优9801抗病,但其抗性还需在大田进行成株期验证。用Bayes法建立了各抗性级的判别函数,判别准确率达96.39%。根据综合病情指数,上述5级的组合分别占总数的1.20%、13.25%、63.25%、21.69%和0.60%。与动态聚类比较,两者极显著相关(r=0.81,P<0.01),说明这两种方法均可用于水稻对纹枯病的抗性评价。但动态聚类法较适用于接种环境相对一致的苗期鉴定,而不能比较不同环境条件下的鉴定结果;综合病情指数法则不受时间、地点和批次的限制,更具实用性。通过这两种方法共筛选出26个抗或中抗的组合,它们之间的遗传距离为0.04~0.71;在遗传距离为0.36处,可将其中的22个组合聚为一簇,表明其遗传基础较窄。系谱追踪表明26个抗或中抗的杂交稻亲本亲缘关系较近。因此,在抗纹枯病育种中,需要拓宽抗病种质的遗传基础,培育聚合有数量抗性的材料或组合。

关键词: 籼型杂交稻, 纹枯病, 抗性鉴定, 动态聚类分析, 综合病情指数

Abstract: Rice sheath blight caused by Rhizoctonia solani is one of the most devastative diseases worldwide, which causes serious yield loss under favorable environmental conditions. R. solani has a very wide host range and the rice germplasm with complete resistance to this disease is zezo. Sheath blight resistance is generally controlled by polygene, with a wide variation among rice cultivers. It is necessary to evaluate probably partial resistance to sheath blight from germplasms for rice breeding program. A total of 166 indica hybrid rice combinations collected from 11 provinces in southern China were inoculated by using five isolates with different pathogenicities at seedling stage in the greenhouse. No combination was found to be completely immune or highly resistant, and the resistance to sheath blight varied significantly among different combinations. Average disease index of these combinations were in accordance with normal distribution N (5.27, 0.682) and ranged from 2.84 to 7.64. The results showed that this inoculation method at seedling stage was simple, rapid, uniform, and allowed to distinguish minor differences in susceptibility, so it can be used for a large-scale screening or primary resistance identification. According to the disease index of each isolate, 166 combinations were classified into five types based on dynamic clustering analysis (DCA), namely resistant (R), moderately resistant (MR), moderately susceptible (MS), susceptible (S) and highly susceptible (HS), accounting for 1.20%, 13.86%, 36.14%, 43.37%, and 5.42%, respectively. The discriminant functions for each type were calculated based on Bayes method, and the accuracy rate for discrimination reached 96.39%. The results indicated that most of the combinations were susceptible. Only two combinations, K you 88 and Zhongyou 9801, were resistant, but should be verified at the adult stage in paddy field. Synthetic disease index (SDI) of all combinations was also calculated by average disease index of the five isolates, the combinations were graded as R, MR, MS, S, and HS based on SDI, accounting for 1.20%, 13.25%, 63.25%, 21.69%, and 0.60%, respectively. There was significant correlation between the results of DCA and SDI (r = 0.81, P < 0.01), showing that both methods can be used for evaluating the disease resistance. But the former method is suitable for seedling screening under the uniform growth conditions; while the latter is independent of time, place and batch of the identification, and more versatile than the former. Only 26 combinations with resistance or moderate resistance to sheath blight were gained by DCA and SDI, the genetic distances ranged from 0.04 to 0.71. Twenty six combinations were divided into two groups by UPGMA cluster analysis, and 22 out of them were grouped into a group with the narrow genetic background at genetic distance of 0.36. There was a close relationship among the parents of the 26 combinations according to the pedigree tracing. Therefore, the practical strategy for rice resistance breeding to sheath blight is further to broaden genetic bases of germplasm, pyramid quantitative resistance genes, construct hybrid combinations with parents having desirable traits and resistance to sheath blight.

Key words: Indica hybrid rice, Sheath blight, Resistance evaluation, Dynamic clustering analysis (DCA), Synthetic disease index (SDI)

[1]Willocquet L, Fernandez L, Savary S. Effect of various crop establishment methods practised by Asian farmers on epidemics of rice sheath blight caused by Rhizoctonia solani. Plant Pathol, 2000, 49: 346–354
[2]Slaton N A, Cartwright R D, Meng J, Gbur E E, Norman R J. Sheath blight severity and rice yield as affected by nitrogen fertilizer rate, application method, and fungicide. Agron J, 2003, 95: 1489–1496
[3]Liao H-N(廖皓年), Xiao L-S(肖陵生), Wang H-S(王华生). Analysis of developing annals and evolving causation of rice sheath blight. Guangxi Plant Prot (广西植保), 1997, (3): 35–38 (in Chinese with English abstract)
[4]Li F(李芳), Cheng L-R(程立锐), Xu M-R(许美容), Zhou Z(周政), Zhang Y(张帆), Cun Y(孙勇), Zhou Y-L(周永力), Zhu L-F(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice. Acta Agron Sin (作物学报), 2009, 35(9): 1729–1737 (in Chinese with English abstract)
[5]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice (Oryza sativa L.) using recombinant inbred lines. Crop Sci, 2005, 45: 503–510
[6]Zou J H, Pan X B, Chen Z X, Xu J Y, Lu J F, Zhai W X, Zhu L H. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (Oryza sativa L.). Theor Appl Genet, 2000, 101: 569-573
[7]Eizenga G C, Lee F N, Rutger J N. Screening Oryza species plants for rice sheath blight resistance. Plant Dis, 2002, 86: 808–812
[8]Chen Z-X(陈宗祥), Zou J-H(邹军煌), Xu J-Y(徐敬友), Tong Y-H(童蕴慧), Tang S-Z(汤述翥), Wang Z-B(王子斌), Jiang R-M(蒋日民), Ling B(凌兵), Tang J(唐进), Pan X-B(潘学彪). A preliminary study on resources of resistance to rice sheath blight. Chin J Rice Sci (中国水稻科学), 2000, 14(1): 15–18 (in Chinese with English abstract)
[9]Pan X B, Rush M C, Sha X Y, Xie Q J, Linscombe S D, Stetina S R, Oard J H. Major gene, nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing. Crop Sci, 1999, 39: 338–346
[10]Xie Q J, Linscombe S D, Rush M C, Jodari-Karimi F. Registration of LSBR-33 and LSBR-5, sheath blight-resistant germplasm lines of rice. Crop Sci, 1992, 32: 507
[11]Zuo S-M(左示敏), Wang Z-B(王子斌), Chen X-J(陈夕军), Gu F(顾芳), Zhang Y-F(张亚芳), Chen Z-X(陈宗祥), Pan X-B(潘学彪). Evaluation of resistance of a novel rice germplasm YSBR1 to sheath blight. Acta Agron Sin (作物学报), 2009, 35(4): 608–614 (in Chinese with English abstract)
[12]Kunihiro Y(国广泰史), Qian Q(钱前), Sato H(佐藤宏之), Teng S(滕胜), Zeng D-L(曾大力), Fujimoto K(藤本宽), Zhu L-H(朱立煌). QTL analysis of sheath blight resistance in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2002, 29(1): 50–55 (in Chinese with English abstract)
[13]Singh A, Rohilla R, Singh U S, Savary S, Willocquet L, Duveiller E. An improved inoculation technique for sheath blight of rice caused by Rhizoctonia solani. Can J Plant Pathol, 2002, 24: 65–68
[14]Jia Y, Correa-Victoria F, McClung A, Zhu L, Liu G, Wamishe Y. Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis, 2007, 91: 485–489
[15]Wang Z-B(王子斌), Zuo S-M(左示敏), Li G(李刚), Chen X-J(陈夕军), Chen Z-X(陈宗祥), Zhang Y-F(张亚芳) , Pan X-B(潘学彪). Rapid identification technology of resistance to rice sheath blight in seedling stage. Acta Phytopathol Sin (植物病理学报), 2009, 39(2): 174–182 (in Chinese with English abstract)
[16]Chen X-J(陈夕军), Wang L(王玲), Zuo S-M(左示敏), Wang Z-B(王子斌), Chen Z-X(陈宗祥), Zhang Y-F(张亚芳), Lu G-D(鲁国东), Zhou E-X(周而勋), Guo Z-J(郭泽建), Huang S-W(黄世文), Pan X-B(潘学彪). Screening of varieties and isolates for identifying interaction between host and pathogen of rice sheath blight. Acta Phytopathol Sin (植物病理学报), 2009, 39(5): 514–520 (in Chinese with English abstract)
[17]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9(suppl): 257–279
[18]International rice genome sequencing project. The map-based sequence of the rice genome. Nature, 2005, 436: 793–800
[19]Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T. Micron, a microsatellite-targeting transposable element in the rice genome. Mol Genet Genomics, 2001, 266: 471–480
[20]Jiang H, Guo L B, Xue D W, Zeng D L, Zhang G H, Dong G J, Gu M H, Qian Q. Genetic analysis and gene-mapping of two reduced-culm-number mutants in rice. J Integr Plant Biol, 2006, 48: 341–347
[21]Nei M. Molecular Evolutionary Genetic. New York: Columbia University Press, 1987. pp 190–191
[22]Prasad B, Eizenga G C. Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis, 2008, 92: 1503–1509
[23]Park D S, Sayler R J, Hong Y G, Nam M H, Yang Y. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis, 2008, 92: 25–29
[24]Ahmad A, Dey L. A k-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng, 2007, 63: 503–527
[25]Saha S, Bandyopadhyay S. A new line symmetry distance and its application to data clustering. J Comput Sci Technol, 2009, 24: 544–556
[26]Mahajan M, Nimbhorkar P, Varadarajan K. The planar k-means problem is NP-hard. Lect Notes Comput Sci, 2009, 5431: 274–285
[27]Zhang K-Z(张楷正), Li P(李平), Li N(李娜) , Xiang X-C(向珣朝). Research progress in germplasm, heredity and breeding of resistance to rice sheath blight. Mol Plant Breed (分子植物育种), 2006, 4(5): 713–720 (in Chinese with English abstract)
[1] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[2] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[3] 苏强,荣玮,张增艳. 小麦类受体蛋白激酶基因TaPK3A的克隆与抗纹枯病功能初步分析[J]. 作物学报, 2019, 45(8): 1158-1165.
[4] 杨洋,陈国康,郭成,张炜,孙素丽,王晓鸣,朱振东,段灿星. 玉米种质资源抗腐霉茎腐病鉴定[J]. 作物学报, 2018, 44(8): 1256-1260.
[5] 罗美英,荣玮,魏学宁,杨坤,徐惠君,禤维言,张增艳. 过表达TaPK-R1基因增强了小麦对纹枯病的抗性和耐冻性[J]. 作物学报, 2016, 42(11): 1601-1608.
[6] 刘颖,张巧凤,付必胜,蔡士宾,蒋彦婕,张志良,邓渊钰,吴纪中,戴廷波. 小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析[J]. 作物学报, 2015, 41(11): 1671-1681.
[7] 申芳嫡,洪彦涛,杜丽璞,徐惠君,马翎健,张增艳. 转细胞凋亡抑制基因OpIAPp35增强小麦对纹枯病的抗性[J]. 作物学报, 2015, 41(10): 1490-1499.
[8] 曹廷杰,陈永兴,李丹,张艳,王西成,赵虹,刘志勇. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测[J]. 作物学报, 2015, 41(08): 1172-1182.
[9] 邢小萍,杨静,袁虹霞,张佳佳,李洪连*,刘文轩*. 普通小麦-卵穗山羊草种质的菲利普孢囊线虫抗性[J]. 作物学报, 2014, 40(11): 1956-1963.
[10] 王宝祥,胡金龙,孙志广,宋兆强,卢百关,周振玲,樊继伟,秦德荣,刘裕强,江玲,徐大勇,万建民. 水稻黑条矮缩病抗性评价方法及抗性资源筛选[J]. 作物学报, 2014, 40(09): 1521-1530.
[11] 孙晓棠,卢冬冬,欧阳林娟,胡丽芳,边建民,彭小松,陈小荣,傅军如,贺晓鹏,贺浩华*,朱昌兰*. 水稻纹枯病抗性关联分析及抗性等位变异发掘[J]. 作物学报, 2014, 40(05): 779-787.
[12] 韩粉霞,韩广振,孙君明,张金巍,于绍轩,闫淑荣,杨华. 44份大豆微核心种质抗菌核病鉴定与评价[J]. 作物学报, 2013, 39(10): 1783-1790.
[13] 李洪杰,王晓鸣,陈怀谷,李伟,刘东涛,张会云. 小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性[J]. 作物学报, 2013, 39(06): 999-1012.
[14] 周淼平,杨学明,姚金保,任丽娟,张增艳,马鸿翔. Gastrodianin基因提高小麦赤霉病和纹枯病的抗性[J]. 作物学报, 2012, 38(09): 1617-1624.
[15] 陈宗祥,左示敏,张亚芳,朱俊凯,王龙平,冯凡,马玉银,潘学彪. 水稻抗纹枯病QTL qSB-9TQ和抗条纹叶枯病基因Stv-bi的聚合育种[J]. 作物学报, 2012, 38(07): 1178-1186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!