作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1671-1681.doi: 10.3724/SP.J.1006.2015.01671
刘颖1,2,**,张巧凤2,**,付必胜2,蔡士宾2,蒋彦婕2,张志良2,邓渊钰3,吴纪中2,*,戴廷波1,*
LIU Ying1,2,**,ZHANG Qiao-Feng2,**,FU Bi-Sheng2,CAI Shi-Bin2,JIANG Yan-Jie2,ZHANG Zhi-Liang2,DENG Yuan-Yu3,WU Ji-Zhong2*,DAI Ting-Bo1,*
摘要:
为揭示小麦纹枯病抗源的遗传多样性,发掘优异的抗性种质,利用沟带接种法对前期筛选出的88份抗性种质进行了3年田间抗性鉴定,鉴定出抗或中抗纹枯病的小麦种质32份。利用分布于全基因组的SSR标记对这些抗源进行了遗传多样性分析,59个SSR标记共检测到308个等位变异,每个标记可以检测到2~13个等位基因,平均5.2个;多态性信息含量(PIC)的变异范围为0.12~0.89,平均为0.61,表明材料的遗传丰富度较高。根据聚类分析和主成分(PCA)分析,32份小麦纹枯病抗源按照遗传相似系数可划分为2个组群,国外引进品种和国内改良品种聚为一类,国内农家品种聚为一类,并且与地理分布特征相符。利用与纹枯病抗性QTL紧密连锁的14个SSR标记对32份抗源进行基因型分析,发现与抗性QTL连锁的2BS上的Xwmc154和7DS上的Xbarc126普遍存在,可用于分子标记辅助选择。在武农148、陕983、陕农78、Coker 983、H-Line、Mason和Compair中仅检测到一个已报道的抗病QTL,而在Tyalt中没有检测到已知抗病QTL,这些材料有可能携带新的纹枯病抗性基因/QTL,可以在育种中加以利用。
[1]Lemańczyk G, Kwa?na H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2013, 135: 187–200[2]张会云, 陈荣振, 冯国华, 刘东涛, 王静, 王晓军, 楼辰军, 张凤. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27: 1150–1153Zhang H Y, Chen R Z, Feng G H, Liu D T, Wang J, Wang X J, Lou C J, Zhang F. Research advances and prospect on wheat sharp eyespot in China. J Triticeae Crops, 2007, 27: 1150–1153 (in Chinese with English abstract)[3]Cromey M G, Butler R C, Munro C A, Shorter S C. Susceptibility of New Zealand wheat cultivars to sharp eyespot. New Zeal Plant Protect, 2005, 58: 268–272[4]蒋彦婕, 吴纪中, 蔡士宾, 朱芳芳, 张巧凤. 小麦抗纹枯病种质资源的鉴定与评价. 麦类作物学报, 2013, 33: 589–594Jiang Y J, Wu J Z, Cai S B, Zhu F F, Zhang Q F. Screening of resistance to sharp eyespot in wheat germplasm. J Triticeae Crops, 2013, 33: 589–594 (in Chinese with English abstract)[5]Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865–2878[6]蔡士宾, 任丽娟, 颜伟, 吴纪中, 陈怀谷, 吴小有, 张仙义. 小麦抗纹枯病种质创新及QTL定位的初步研究. 中国农业科学, 2006, 39: 928–934Cai S B, Ren L J, Yan W, Wu J Z, Chen H G, Wu X Y, Zhang X Y. Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin, 2006, 39: 928–934 (in Chinese with English abstract)[7]霍纳新. 小麦纹枯病、白粉病抗性QTL分析. 中国农业科学院博士学位论文, 北京, 2002Huo N X. QTL analysis of resistance to disease caused by Rhizoctonia cerealis and Blumeris graminis. PhD Dissertation of the Chinese Academy of Agricultural Sciences, Beijing, China, 2002 (in Chinese with English abstract) [8]任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTL的SSR标记. 扬州大学学报, 2004, 25(4): 16–19Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H Y, Lu W Z. SSR marker linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ, 2004, 25(4): 16–19 (in Chinese with English abstract)[9]任丽娟, 张旭, 周淼平, 陆维忠, 马鸿翔. .小麦抗纹枯病和赤霉病QTL定位研究. 麦类作物学报, 2007, 27: 416–420Ren L J, Zhang X, Zhou M P, Lu W Z, Ma H X. QTL analysis of sharp eyespot (Rhizoctonia cerealis) and Fusarium head blight in wheat. J Triticeae Crops, 2007, 27: 416–420 (in Chinese with English abstract)[10]汤颋, 任丽娟, 蔡士宾, 吴纪中, 陆维忠, 陈建民, 马鸿翔. 小麦ARz抗纹枯病的QTL定位研究. 麦类作物学报, 2004, 24(4): 11–16Tang T, Ren L J, Cai S B, Wu J Z, Lu W Z, Chen J M, Ma H X. Study on QTL mapping of sharp eyespot resistance (Rhizoctonia cerealis) in wheat ARz. J Triticeae Crops, 2004, 24(4): 11–16 (in Chinese with English abstract)[11]张小村, 李斯深, 赵新华, 范玉顶, 李瑞军. 小麦纹枯病抗性的QTL分析和抗病基因的分子标记. 植物遗传资源学报, 2005, 6: 276–279Zhang X C, Li S S, Zhao X H, Fan Y D, Li R J. QTL and molecular markers for resisitance gene of wheat sharp eyespot. J Plant Genet Resour, 2005, 6: 276–279 (in Chinese with English abstract)[12]张小村, 李斯深, 赵新华, 李瑞军. 15个小麦重组自交系群体抗纹枯病性的遗传分析. 麦类作物学报, 2004, 24(3): 13–16Zhang X C, Li S S, Zhao X H, Li R J. Genetic analysis on resistance to sharp eyespot by using fifteen populations of recombinant inbred in wheat. J Triticeae Crops, 2004, 24(3): 13–16 (in Chinese with English abstract)[13]朱芳芳. Niavt14/徐麦25重组自交系群体小麦纹枯病抗性QTL分析. 南京农业大学硕士学位论文, 江苏南京, 2011Zhu F F. QTLs mapping for resistance to sharp eyespot by using a recombinant inbred lines population derived from the cross between Niavt 14 and Xuzhou 25 in wheat. MS Thesis of Nanjing Agricultural University, Jiangsu, China, 2011 (in Chinese with English abstract)[14]Huang Y D, Millet B P, Beaubien K A, Dahl S K, Steffenson B J, Smith K P, Muehlbauer G J. Haplotype diversity and population structure in cultivated and wild barely evaluated for Fusarium head blight responses. Theor Appl Genet, 2013, 126: 619–636[15]Ogbonnaya F C, Imtiaz M, DePauw R M. Haplotype diversity of preharvest sprouting QTLs in wheat. Genome, 2007, 50: 107–118[16]Sardouie-Nasab S, Mohammadi-Nejad G, Zebarjadi A. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Mol Biol Rep, 2013, 40: 4661–4671[17]Yu G T, Wang T, Anderson K M, Harris M O, Cai X W, Xu S S. Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to Hessian fly. Crop Sci, 2012, 52: 752–763[18]王裕中. 纹枯病及其抗性的研究. 见: 庄巧生. 杜振华主编. 中国小麦育种研究进展(1991–1995). 北京:中国农业出版社, 1996. pp 266–274Wang Y Z. Study on wheat sharp eyespot and its resistance. In: Zhuang Q S, Du Z H, eds. Advance of wheat Breeding in Chia. Beijing: China Agriculture Press, 1996. pp 266–274 (in Chinese)[19]李洪连, 袁红霞, 刁晓葛, 李锁平, 胡玉欣, 王守正. 河南小麦主要品种纹枯病抗性评价. 河南农业大学学报, 1998, 32(2): 107–111Li H L, Yuan H X, Diao X G, Li S P, Hu Y X, Wang S Z. Evaluation on the resistance of major wheat varieties in Hernan province to sharp eyespot. Acta Agric Univ Hernanensis, 1998, 32(2): 107–111 (in Chinese with English abstract)[20]Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome, 1994, 37: 871–875[21]Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genpmics, 2004, 4: 12–25[22]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114[23]Khlestkna E K, Röder M S, Efremova T T, Börner A, Shumny V K. The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed, 2004, 123: 122–127[24]Peng J H, Bai Y, Haley S D, Lapitan N L V. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to Russia wheat aphid. Genetica, 2009, 135: 95–122[25]Liu J C, Liu L, Hou N, Zhang A M, Liu C G. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica, 2007, 155: 249–258[26]李斯深, 王洪刚, 刘爱新, 李宪彬, 李安飞, 刘树兵. 小麦种质抗纹枯病性的鉴定和遗传分析. 西北植物学报, 2001, 21: 1004–1008Li S S, Wang H G, Liu A X, Li X B, Li A F, Liu S B. Indentification and genetic analysis of resistance to sharp eyespot (Rhizoctonia cerealis) in winter wheat germplasm. Acta Bot Boreal-Occident Sin, 2001, 21: 1004–1008 (in Chinese with English abstract)[27]He X Y, Singh P K, Duveiller S, Schlang N, Dreisigacker S, Singh R P. Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico. Eur J Plant Pathol, 2013, 136: 123–134 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRK、SLG和SP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168. |
[6] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[7] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[8] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[9] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[10] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[11] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[12] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[13] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[14] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[15] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
|