欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1671-1681.doi: 10.3724/SP.J.1006.2015.01671

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦纹枯病抗源的遗传多样性及抗性基因位点SSR标记分析

刘颖1,2,**,张巧凤2,**,付必胜2,蔡士宾2,蒋彦婕2,张志良2,邓渊钰3,吴纪中2,*,戴廷波1,*   

  1. 1南京农业大学农学院, 江苏南京 210095; 2江苏省农业科学院粮食作物研究所 / 江苏省农业种质资源保护与利用平台, 江苏南京 210014; 3江苏省农业科学院植物保护研究所, 江苏南京 210014
  • 收稿日期:2015-02-04 修回日期:2015-06-01 出版日期:2015-11-12 网络出版日期:2015-06-29
  • 通讯作者: 戴廷波, E-mail: tingbod@njau.edu.cn, Tel: 025-84395033; 吴纪中, E-mail: wujz@jaas.ac.cn, Tel: 025-84391667
  • 基金资助:

    本研究由国家科技支撑计划项目(2013BAD01B02-12),国家现代农业产业技术体系建设专项(CARS-3-1-17),江苏省农业科技自主创新资金项目(CX(13)2019)和江苏省自然科学基金项目(BK20130728)资助。

Genetic Diversity of Wheat Germplasm Resistant to Sharp Eyespot and Genotyping of Resistance Loci Using SSR Markers

LIU Ying1,2,**,ZHANG Qiao-Feng2,**,FU Bi-Sheng2,CAI Shi-Bin2,JIANG Yan-Jie2,ZHANG Zhi-Liang2,DENG Yuan-Yu3,WU Ji-Zhong2*,DAI Ting-Bo1,*   

  1. 1 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Provincial Platform for Conservation and? Utilization of Agricultural Germplasm, Nanjing 210014; 3 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2015-02-04 Revised:2015-06-01 Published:2015-11-12 Published online:2015-06-29
  • Contact: 戴廷波, E-mail: tingbod@njau.edu.cn, Tel: 025-84395033; 吴纪中, E-mail: wujz@jaas.ac.cn, Tel: 025-84391667

摘要:

为揭示小麦纹枯病抗源的遗传多样性,发掘优异的抗性种质,利用沟带接种法对前期筛选出的88份抗性种质进行了3年田间抗性鉴定,鉴定出抗或中抗纹枯病的小麦种质32份。利用分布于全基因组的SSR标记对这些抗源进行了遗传多样性分析,59SSR标记共检测到308个等位变异,每个标记可以检测到2~13个等位基因,平均5.2个;多态性信息含量(PIC)的变异范围为0.12~0.89,平均为0.61,表明材料的遗传丰富度较高。根据聚类分析和主成分(PCA)分析,32份小麦纹枯病抗源按照遗传相似系数可划分为2个组群,国外引进品种和国内改良品种聚为一类,国内农家品种聚为一类,并且与地理分布特征相符利用与纹枯病抗性QTL紧密连锁的14SSR标记对32份抗源进行基因型分析,发现与抗性QTL连锁的2BS上的Xwmc1547DS上的Xbarc126普遍存在,可用于分子标记辅助选择。在武农148、陕983、陕农78Coker 983H-LineMasonCompair中仅检测到一个已报道的抗病QTL,而在Tyalt中没有检测到已知抗病QTL,这些材料有可能携带新的纹枯病抗性基因/QTL,可以在育种中加以利用

关键词: 小麦, 纹枯病, 遗传多样性, 聚类分析, PCA分析, QTL

Abstract:

A three-year filed identification with artificial inoculation was carried out to validate 88 wheat germplasm resources resistant to sharp eyespot identified in previous studies. Thirty-two accessions showed resistance or moderate resistance to sharp eyespot. Rich genetic diversity among these resistant resources was revealed by 59 SSR markers across the whole wheat genome. A total of 308 alleles were detected with 2–13 alleles per marker and an average of 5.2. The polymorphism information content (PIC) ranged from 0.12 to 0.89 with an average of 0.61. The clustering and principal component analysis (PCA) based on molecular marker data indicated that the 32 resistant accessions were grouped in improved variety (including alien varieties) and landraces, which was consistent with geographic distribution. The 32 resistant varieties were genotyped with 14 SSR markers closely linked to QTLs for sharp eyespot resistance. Xwmc154 on 2BS and Xbarc126 on 7DS were frequently detected in the resistant resources. As a consequence, they are recommended in marker-assisted selection. Only one known resistance QTL was detected in varieties Wunong 148, Shaan 983, Shaannong 78, Coker 983, H-Line, Mason and Compair, whereas none resistance QTL was found in Tyalt. These varieties might carry novel resistance genes/QTLs against wheat sharp eyespot and are promising in wheat breeding.

Key words: Wheat, Sharp eyespot, Genetic diversity, Cluster analysis, PCA analysis, QTL

[1]Lemańczyk G, Kwa?na H. Effects of sharp eyespot (Rhizoctonia cerealis) on yield and grain quality of winter wheat. Eur J Plant Pathol, 2013, 135: 187–200



[2]张会云, 陈荣振, 冯国华, 刘东涛, 王静, 王晓军, 楼辰军, 张凤. 中国小麦纹枯病的研究现状与展望. 麦类作物学报, 2007, 27: 1150–1153



Zhang H Y, Chen R Z, Feng G H, Liu D T, Wang J, Wang X J, Lou C J, Zhang F. Research advances and prospect on wheat sharp eyespot in China. J Triticeae Crops, 2007, 27: 1150–1153 (in Chinese with English abstract)



[3]Cromey M G, Butler R C, Munro C A, Shorter S C. Susceptibility of New Zealand wheat cultivars to sharp eyespot. New Zeal Plant Protect, 2005, 58: 268–272



[4]蒋彦婕, 吴纪中, 蔡士宾, 朱芳芳, 张巧凤. 小麦抗纹枯病种质资源的鉴定与评价. 麦类作物学报, 2013, 33: 589–594



Jiang Y J, Wu J Z, Cai S B, Zhu F F, Zhang Q F. Screening of resistance to sharp eyespot in wheat germplasm. J Triticeae Crops, 2013, 33: 589–594 (in Chinese with English abstract)



[5]Chen J, Li G H, Du Z Y, Quan W, Zhang H Y, Che M Z, Wang Z, Zhang Z J. Mapping of QTL conferring resistance to sharp eyespot (Rhizoctonia cerealis) in bread wheat at the adult plant growth stage. Theor Appl Genet, 2013, 126: 2865–2878



[6]蔡士宾, 任丽娟, 颜伟, 吴纪中, 陈怀谷, 吴小有, 张仙义. 小麦抗纹枯病种质创新及QTL定位的初步研究. 中国农业科学, 2006, 39: 928–934



Cai S B, Ren L J, Yan W, Wu J Z, Chen H G, Wu X Y, Zhang X Y. Germplasm development and mapping of resistance to sharp eyespot (Rhizoctonia cerealis) in wheat. Sci Agric Sin, 2006, 39: 928–934 (in Chinese with English abstract)



[7]霍纳新. 小麦纹枯病、白粉病抗性QTL分析. 中国农业科学院博士学位论文, 北京, 2002



Huo N X. QTL analysis of resistance to disease caused by Rhizoctonia cerealis and Blumeris graminis. PhD Dissertation of the Chinese Academy of Agricultural Sciences, Beijing, China, 2002 (in Chinese with English abstract)



[8]任丽娟, 蔡士宾, 汤颋, 吴纪中, 周淼平, 颜伟, 马鸿翔, 陆维忠. 小麦纹枯病抗性QTL的SSR标记. 扬州大学学报, 2004, 25(4): 16–19



Ren L J, Cai S B, Tang T, Wu J Z, Zhou M P, Yan W, Ma H Y, Lu W Z. SSR marker linked resistance QTLs to sharp eyespot (Rhizoctonia cerealis) in wheat. J Yangzhou Univ, 2004, 25(4): 16–19 (in Chinese with English abstract)



[9]任丽娟, 张旭, 周淼平, 陆维忠, 马鸿翔. .小麦抗纹枯病和赤霉病QTL定位研究. 麦类作物学报, 2007, 27: 416–420



Ren L J, Zhang X, Zhou M P, Lu W Z, Ma H X. QTL analysis of sharp eyespot (Rhizoctonia cerealis) and Fusarium head blight in wheat. J Triticeae Crops, 2007, 27: 416–420 (in Chinese with English abstract)



[10]汤颋, 任丽娟, 蔡士宾, 吴纪中, 陆维忠, 陈建民, 马鸿翔. 小麦ARz抗纹枯病的QTL定位研究. 麦类作物学报, 2004, 24(4): 11–16



Tang T, Ren L J, Cai S B, Wu J Z, Lu W Z, Chen J M, Ma H X. Study on QTL mapping of sharp eyespot resistance (Rhizoctonia cerealis) in wheat ARz. J Triticeae Crops, 2004, 24(4): 11–16 (in Chinese with English abstract)



[11]张小村, 李斯深, 赵新华, 范玉顶, 李瑞军. 小麦纹枯病抗性的QTL分析和抗病基因的分子标记. 植物遗传资源学报, 2005, 6: 276–279



Zhang X C, Li S S, Zhao X H, Fan Y D, Li R J. QTL and molecular markers for resisitance gene of wheat sharp eyespot. J Plant Genet Resour, 2005, 6: 276–279 (in Chinese with English abstract)



[12]张小村, 李斯深, 赵新华, 李瑞军. 15个小麦重组自交系群体抗纹枯病性的遗传分析. 麦类作物学报, 2004, 24(3): 13–16



Zhang X C, Li S S, Zhao X H, Li R J. Genetic analysis on resistance to sharp eyespot by using fifteen populations of recombinant inbred in wheat. J Triticeae Crops, 2004, 24(3): 13–16 (in Chinese with English abstract)



[13]朱芳芳. Niavt14/徐麦25重组自交系群体小麦纹枯病抗性QTL分析. 南京农业大学硕士学位论文, 江苏南京, 2011



Zhu F F. QTLs mapping for resistance to sharp eyespot by using a recombinant inbred lines population derived from the cross between Niavt 14 and Xuzhou 25 in wheat. MS Thesis of Nanjing Agricultural University, Jiangsu, China, 2011 (in Chinese with English abstract)



[14]Huang Y D, Millet B P, Beaubien K A, Dahl S K, Steffenson B J, Smith K P, Muehlbauer G J. Haplotype diversity and population structure in cultivated and wild barely evaluated for Fusarium head blight responses. Theor Appl Genet, 2013, 126: 619–636



[15]Ogbonnaya F C, Imtiaz M, DePauw R M. Haplotype diversity of preharvest sprouting QTLs in wheat. Genome, 2007, 50: 107–118



[16]Sardouie-Nasab S, Mohammadi-Nejad G, Zebarjadi A. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Mol Biol Rep, 2013, 40: 4661–4671



[17]Yu G T, Wang T, Anderson K M, Harris M O, Cai X W, Xu S S. Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to Hessian fly. Crop Sci, 2012, 52: 752–763



[18]王裕中. 纹枯病及其抗性的研究. 见: 庄巧生. 杜振华主编. 中国小麦育种研究进展(1991–1995). 北京:中国农业出版社, 1996. pp 266–274



Wang Y Z. Study on wheat sharp eyespot and its resistance. In: Zhuang Q S, Du Z H, eds. Advance of wheat Breeding in Chia. Beijing: China Agriculture Press, 1996. pp 266–274 (in Chinese)



[19]李洪连, 袁红霞, 刁晓葛, 李锁平, 胡玉欣, 王守正. 河南小麦主要品种纹枯病抗性评价. 河南农业大学学报, 1998, 32(2): 107–111



Li H L, Yuan H X, Diao X G, Li S P, Hu Y X, Wang S Z. Evaluation on the resistance of major wheat varieties in Hernan province to sharp eyespot. Acta Agric Univ Hernanensis, 1998, 32(2): 107–111 (in Chinese with English abstract)



[20]Ma Z Q, Sorrells M E, Tanksley S D. RFLP markers linked to powdery mildew resistance genes Pm1, Pm2, Pm3, and Pm4 in wheat. Genome, 1994, 37: 871–875



[21]Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G, Qi L L, Gill B S, Dufour P, Murigneux A, Bernard M. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genpmics, 2004, 4: 12–25



[22]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114



[23]Khlestkna E K, Röder M S, Efremova T T, Börner A, Shumny V K. The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers. Plant Breed, 2004, 123: 122–127



[24]Peng J H, Bai Y, Haley S D, Lapitan N L V. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to Russia wheat aphid. Genetica, 2009, 135: 95–122



[25]Liu J C, Liu L, Hou N, Zhang A M, Liu C G. Genetic diversity of wheat gene pool of recurrent selection assessed by microsatellite markers and morphological traits. Euphytica, 2007, 155: 249–258



[26]李斯深, 王洪刚, 刘爱新, 李宪彬, 李安飞, 刘树兵. 小麦种质抗纹枯病性的鉴定和遗传分析. 西北植物学报, 2001, 21: 1004–1008



Li S S, Wang H G, Liu A X, Li X B, Li A F, Liu S B. Indentification and genetic analysis of resistance to sharp eyespot (Rhizoctonia cerealis) in winter wheat germplasm. Acta Bot Boreal-Occident Sin, 2001, 21: 1004–1008 (in Chinese with English abstract)



[27]He X Y, Singh P K, Duveiller S, Schlang N, Dreisigacker S, Singh R P. Identification and characterization of international Fusarium head blight screening nurseries of wheat at CIMMYT, Mexico. Eur J Plant Pathol, 2013, 136: 123–134

[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 张以忠, 曾文艺, 邓琳琼, 张贺翠, 刘倩莹, 左同鸿, 谢琴琴, 胡燈科, 袁崇墨, 廉小平, 朱利泉. 甘蓝S-位点基因SRKSLGSP11/SCR密码子偏好性分析[J]. 作物学报, 2022, 48(5): 1152-1168.
[6] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[7] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[8] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[9] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[14] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[15] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!