作物学报 ›› 2011, Vol. 37 ›› Issue (03): 433-442.doi: 10.3724/SP.J.1006.2011.00433

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1 中国农业科学院棉花研究所 / 农业部棉花遗传改良重点实验室,河南安阳455000;2 江苏沿海地区农业科学研究所,江苏盐城224002
  • 收稿日期:2010-06-18 修回日期:2010-12-05 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 基金资助:


QTL Analysis on Yield and Its Components in Upland Cotton RIL

ZHANG Wei1,LIU Fang1,LI Shao-Hui1,WANG Wei1,2,WANG Chun-Ying1,ZHANG Xiang-Di1,WANG Yu-Hong1,SONG Guo-Li1,WANG Kun-Bo1,*   

  1. 1 Cotton Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; 2 Agricultural Sciences Research Institute of Coastal Region of Jiangsu, Yancheng 224002, China
  • Received:2010-06-18 Revised:2010-12-05 Published:2011-03-12 Published online:2011-01-17

摘要: 利用爱字棉1517×德州047重组近交系(recombinant inbred lines, RIL)中G6群体构建的SSR遗传连锁图谱及基于混合线性模型的复合区间作图法对QTL进行定位,并对主效QTL,加性×加性上位性QTL及与环境互作效应进行分析,为利用分子聚合方法提高产量提供理论依据。对2006年、2008年以及2009年的产量性状进行分离分析,检测到24个不同年份的主效QTL,其中相关于单株籽棉、单株皮棉、衣分、子指以及单株铃数的分别检测到1个不同年份稳定存在的主效QTL;对3年的产量性状作环境因子联合分析,检测到14个主效QTL,其中6个与环境互作,检测到20对加加上位性QTL,其中7对与环境互作。不同年份检测的稳定且受环境影响小或不受环境影响的与近处标记紧密连锁的主效QTL可用于分子标记辅助选择,以提高育种的效率。

关键词: 陆地棉, 重组自交系, 产量性状, 主效QTL, 上位性QTL, Q ×, E效应

Abstract: The genetic linkage map of SSR, constructed by mixed linear model composite interval mapping with CRI-G6 (Acala 1517 × Dezhou 047) population was used to detect and localize QTLs, including main-effect QTLs, epistasis QTLs and Q×E interaction effects in order to provide information applicable to cotton MAS (molecular marker assisted selection breeding). In a separate analysis, 24 major QTLs for yield traits were identified in the three different years. Each stable major QTL was detected for seed yield, lint yield, lint percentage, seed index and bolls per plant, respectively. Fourteen main-effect QTLs and 20 pairs of additive-additiveepistasis QTLs were detected by joint analysis in three years,among them six main-effect QTLs and seven pairs of additive-additive epistasis QTLs interacted with environments. These stable main-effect QTLs with a large effect (accounting for over 10% of phenotypic variation), which were scanned in different years and linked closely with markers, can be used for MAS in high-yield breeding program.

Key words: Upland Cotton, Recombinant inbred line, Yield trait, Main-effect QTL, Epitasis QTL, QTL ×, Environment interaction effect

[1]Zhang P-T(张培通), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Yu J-Z(俞敬忠), Zhang T-Z(张天真). Molecular tagging of QTLs for yield and its components of G. hirsutum cv. Simian 3. Acta Agron Sin (作物学报), 2006, 32(8): 1197-1203 (in Chinese with English abstract)
[2]Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T D, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417
[3]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541
[4]Ullon M, Cantrell R G, Percy R G. QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. J Cotton Sci, 2000, 4: 10-18
[5]Ulloa M, Meredith W R, Shappley Z W, Kahler A L. RFLP genetic linkage maps from four F2:3 populations and a Joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200-208
[6]Shappley Z W, Jenkins J N, Meredith W R, McCarty J C. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theor Appl Genet, 1998, 97: 756-761
[7]Shappley Z W, Jenkins J N, Zhu J, Jack C, McCarty J C. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cotton Sci, 1998, 2: 153-163.
[8]Zhang Z S, Xiao Y H, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91-99
[9]Shen X L, Guo W Z, Yu J, Kohel R J, Zhang T Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed, 2005, 15: 169-181
[10]Shen X L, Zhang T Z, Guo W Z, Zhu X F, Zhang X Y. Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci, 2006, 46: 61-66
[11]Guo W Z, Ma G J, Zhu Y C, Yi C X, Zhang T Z. Molecular tagging and mapping of quantitative trait loci for lint percentage and morphological marker genes in upland Cotton. J Integr Plant Biol, 2006, 48: 320-326
[12]Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland Cotton. Euphytica, 2007, 155: 371-380
[13]Park Y H, Alabady M S, Ulloa M, Sickler B, Wilkins T A, Yu J, Stelly D M, Kohel R J, El-Shihy O M, Cantrell R G. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genomics, 2005, 274: 428-441
[14]Ulloa M, Saha S, Jenkins J N, Meredith W R, McCarty J C, Stelly D M. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) JoinMap. J Hered, 2005, 96: 132-144
[15]Lin Z X, Zhang Y X, Zhang X L, Guo X P. A high-density integrative linkage map for Gossypium hirsutum. Euphytica, 2009, 166: 35-45
[16]Zhang Z S, Hu M C, Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q. Coustruction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in Upland Cotton (Gossypium hirstum L.). Mol Breed, 2009, 24: 49-61
[17]Zhang X-L(张先亮), Wang K-B(王坤波), Song G-L(宋国立), Liu F(刘方), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣), Wang Y-H(王玉红). Primary QTL mapping of Upland Cotton RIL CRI-G6 by SSR marker. Cotton Sci (棉花学报), 2008, 20(3): 92-197 (in Chinese with English abstract)
[18]Song G-L(宋国立), Cui R-X(崔荣霞), Wang K-B(王坤波), Guo L-P(郭立平), Li S-H(黎绍惠), Wang C-Y(王春英), Zhang X-D(张香娣). A rapid improved CTAB method for extraction of cotton genomic DNA. Acta Gossypii Sin (棉花学报), 1998, 10(5): 273-275 (in Chinese with English abstract)
[19]Zhang J(张军), Wu Y-T(武耀庭), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of SSR markers in cotton with PAGE/silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)
[20]Mei M, Syed N H, Gao W, Thaxton P M, Smith C W, Stelly D M, Chen Z J. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor Appl Genet, 2004, 108: 280-291
[21]Van Ooijen J W. MapQTL 5.0: Software for the Mapping Quantitative Trait Loci in Experimental Populations. Wageningen, the Netherlands: Plant Research International, 2004
[22]Lacape J M, Nguyen T B, Thibivilliers S, Burr B, Hau B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population. Genome, 2003, 46: 612-626
[23]Nguyen T B, Giband M, Brottier P, Risterucci A M, Lacape J M. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet, 2004, 109: 167-175
[24]Frelichowski J E, Palmer M B, Main D, Tomleins J P, Cantrell R J, Stelly D M, Yu J, Kohel R J, Ulloa M. Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends. Mol Genet Genomics, 2006, 275: 479-491
[25]Zhu J, Weir B S. Mixed model approaches for genetics analysis of quantitative traits. In: Chen L S, Ruan S G, Zhu J, eds. Advanced Topics in Biomathematics: Proceedings of International Conference on Mathematical Biology. Singapore: World Scientific Publishing Co., 1998. pp 321-333
[26]McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Mori- shima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[27]Wang J(王娟), Guo W-Z(郭旺珍), Zhang T-Z(张天真). QTL Mapping for fiber quality properties in cotton cultivar Yumian 1. Acta Agron Sin (作物学报), 2007, 33(12): 1915-1921 (in Chinese with English abstract)
[28]Li L(李莲). Molecular Marker Study On Cotton Fiber Quality, Yield and Resistance to Verticillium Wilt Using Advanced Backcross Recombinational Lines between Upland Cotton (G. hirsutum. L.) and Island Cotton (G. barbadense. L). MS Dissertation of Chinese Academy of Agricultural Sciences, 2008. pp 81-82 (in Chinese with English abstract)
[29]Qin Y-S(秦永生), Liu R-Z(刘任重), Mei H-X(梅鸿献), Zhang T-Z(张天真), Guo W-Z(郭旺珍). QTL mapping for yield rraits in Upland Cotton (Gossypium hirsutum L.). Acta Agron Sin (作物学报), 2009, 35(10): 1812-1821 (in Chinese with English abstract)
[30]Devicent M C, Tanksley S D. QTL analysis of transgressive segregation in an interspcific tomato cross. Genetics, 1993, 134: 585-596
[31]Doebley J, Stec A. Genetic analysis of the morphological differences between maize and teosine. Genetics, 1991, 129: 285-295
[32]Tanksely S D, Nelson J C. Advanced backcross QTI analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203
[33]Jiang C X, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424
[34]Zhou P H, Tan Y F, He Y Q, Xu C G, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection. Theor Appl Genet, 2003, 106: 326-331
[35]Specht J E, Chase K, Macrander M, Graef B L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509
[36]Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
[37]Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P, Yu X Q, Ying C S, Luo L J. Gene actions of QTL affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross population. Theor Appl Genet, 2005, 110: 649-659
[38]Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed, 2007, 20: 41-51
[39]Mcmullen M D, Snook M, Lee E A, Byrne P F, Kross H, Musket T A, Houchins K, Coe Jr E H. The biological basis of epistasis between quantitative trait loci for flavone and 3-deoxyantho- cyanin synthesis in maize (Zea mays L.). Genome, 2001, 44: 667-676
[40]Hinze L L, Lamkey K R. Absence of epistasis for grain yield in elite maize hybrids. Crop Sci, 2003, 43: 46-56
[41]Yan J-B(严建兵), Tang H(汤华), Huang Y-Q(黄益勤), Zheng Y-L(郑用琏), Subhash C, Li J-S(李建生). A genome scan for quantitative trait loci affecting grain yield and its components of maize both in single- and two-locus levels. Chin Sci Bull, 2006, 51(12): 1413-1421 (in Chinese)
[42]Jansen R C, Van Ooijien J M, Stam P. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet, 1995, 91: 33-37
[43]Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651
[44]Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland. Euphytica, 2006, 152: 367-378
[45]Guo L-B(郭龙彪), Luo L-J(罗利军), Xing Y-Z(邢永忠), Xu C-G(徐才国), Mei H-W(梅捍卫), Wang Y-P(王一平), Zhong D-B(钟代彬), Qian Q(钱前), Ying C-S(应存山), Shi C-H(石春海). Dissection of QTLs in two years for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2003, 17(3): 211-218 (in Chinese with English abstract)
[46]Bao J S, Bao Z Y, He P, Zhu L H. Detection of QTLs controlling heading date in the process of rice development at two environments. J Zhejiang Univ (Agric & Life Sci), 2002, 28(1): 27-32
[47]Wang B-H(汪保华), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Wu Y-T(武耀庭), Huang N-T(黄乃泰), Zhang T-Z(张天真). QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics, 2007, 34: 35-45
[1] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[2] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[3] 郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳. 利用RIL群体创制低山嵛酸花生新种质[J]. 作物学报, 2020, 46(5): 661-667.
[4] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[5] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[6] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[7] 杨晓梦, 李霞, 普晓英, 杜娟, Muhammad Kazim Ali, 杨加珍, 曾亚文, 杨涛. 大麦重组自交系群体籽粒总花色苷含量和千粒重QTL定位[J]. 作物学报, 2020, 46(01): 52-61.
[8] 闫超,郑剑,段文静,南文斌,秦小健,张汉马,梁永书. 越冬栽培稻产量性状相关QTL定位[J]. 作物学报, 2019, 45(4): 522-537.
[9] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[10] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[11] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[12] 刘江宁,王楚鑫,张宏根,缪一栩,高海林,许作鹏,刘巧泉,汤述翥. 水稻黑条矮缩病抗性QTL定位[J]. 作物学报, 2019, 45(11): 1664-1671.
[13] 赵佳佳,马小飞,郑兴卫,郝建宇,乔玲,葛川,王爱爱,张树伟,张晓军,姬虎太,郑军. 不同水分条件下HMW-GS对小麦品质的影响[J]. 作物学报, 2019, 45(11): 1682-1690.
[14] 黄聪,李晓方,李定国,林忠旭. 利用陆地棉MAGIC群体定位产量、生育期和株高性状的QTL[J]. 作物学报, 2018, 44(9): 1320-1333.
[15] 王作敏,刘瑾,孙士超,张新宇,薛飞,李艳军,孙杰. 彩色棉多药和有毒化合物输出蛋白MATE家族基因的鉴定及表达分析[J]. 作物学报, 2018, 44(9): 1380-1392.
Full text



No Suggested Reading articles found!