欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 982-990.doi: 10.3724/SP.J.1006.2011.00982

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

GmAREB基因提高拟南芥的干旱、氧化胁迫耐性

高世庆1,陈明2,徐兆师2,唐益苗1,李连城2,马有志2,赵昌平1   

  1. 1 北京市农林科学院 / 北京杂交小麦工程技术研究中心,北京100097;2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程 /农业部作物遗传改良与育种重点开放实验室,北京100081
  • 收稿日期:2010-11-12 修回日期:2011-03-08 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 赵昌平, E-mail: cp_zhao@sohu.com; 马有志, E-mail: mayzh@yahoo.com.cn
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX08002-002),国家高技术研究发展计划(863计划)项目(2008AA10Z124),国家自然科学基金项目(30700504, 30700508),北京市科技新星项目(2007B056, 2008B035),北京农林科学院院青年基金项目和北京市自然基金项目(5102016)资助。

GmAREB Gene Improves Tolerances to Drought and Oxidation in Transgenic Arabidopsis

GAO Shi-Qing1,CHEN Ming2,XU Zhao-Shi2,TANG Yi-Miao1,LI Lian-Cheng2,MA You-Zhi2,ZHAO Chang-Ping1   

  1. 1 Beijing Engineering and Technical Research Center for Hybrid Wheat / Beijing Academy of Agricultural and Forestry Science, Beijing 100097, China; 2 National Key Facility for Crop Genetic Resources and Genetic Improvement / Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture / Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-11-12 Revised:2011-03-08 Published:2011-06-12 Published online:2011-04-12
  • Contact: 赵昌平, E-mail: cp_zhao@sohu.com; 马有志, E-mail: mayzh@yahoo.com.cn

摘要: 以耐盐性较强的大豆(Glycine max L.)品种铁丰8号为试验材料,克隆到1个A亚族bZIP类转录因子基因,命名为GmAREB (Glycine max ABA responsive element binding protein)。该基因由1 317个核苷酸组成,编码439个氨基酸残基,包括4个保守的磷酸化位点区域(C1、C2、C3和C4)、1个核定位信号区(KVVE)和1个bZIP转录因子保守域。聚类分析显示GmAREB蛋白与拟南芥ABF2、水稻OsTRAB1具有较高的同源性,并存在较近的亲缘关系。采用凝胶阻滞实验方法证明GmAREB蛋白与ABRE顺式元件具有体外结合特异性。功能分析结果表明, 在干旱胁迫条件下, GmAREB转基因拟南芥的存活率(50%)显著高于野生型(5%);气孔统计分析显示转基因植株的气孔开度(0.8 μm)明显比对照开度小(2.6 μm)。氧化胁迫结果显示GmAREB转基因拟南芥在甲基紫精溶液中叶绿素含量比野生型高(7.3 mg g–1 FW)。转基因拟南芥RT-PCR分析表明,GmAREB基因过表达能够增强下游胁迫相关基因ABI1ABI2的表达,抑制气孔开闭相关基因KAT1KAT2的表达。综上所述,GmAREB基因过表达有效调控了转基因拟南芥下游靶基因表达,加速了气孔关闭,减少了水分蒸发和叶绿素降解,从而提高了转基因拟南芥对干旱、氧化胁迫耐性。

关键词: ABA, bZIP转录因子, 拟南芥, 胁迫耐性

Abstract: Abiotic stresses such as drought, high-salt and low temperature severely affect the yield and quality of crops. It is reported that subfamily A of alkalescence leucine zipper transcription factors (basic leucine zipper, bZIP) mainly participated in response to ABA, drought, high salt and oxidative stresses, plays vital roles in stress signal transduction, downstream gene expression regulation and improvement of anti-adversity in plants. In this study, soybean (Glycine max) cv. Tiefeng 8 with salt tolerance was used to isolate and obtain a bZIP transcription factor gene by electronic assembly methods, which was named as GmAREB (Glycine max ABA responsive element binding protein). This gene was composed of 1,317 nucleotides and encoded 439 amino acids. Sequence analysis showed that there were four putative phosphorylation sites (C1, C2, C3, C4), a nuclear localization signal region (KVVE) and a conservative bZIP domain. Homology and phylogenetic trees displayed that GmAREB had the higher homology and more close relationships with Arabidopsis ABF2 and rice TRAB1. To study the combining characteristics of transcription factors and DNA, we carried out electrophoretic mobility shift assay (EMSA) experiment and the results displayed thatGmAREB could specifically bind the ABRE cis-element in vivo. Functional identification of stress treatments showed that the survival rate of 35S::GmAREB transgenic plants treated by drought was higher (50%) than that (5%) of wild type. Stomatal observation displayed that the stomatal aperture of transgenic Arabidopsis (0.8 μm) was less than that of control (2.6 μm) under the drought stress for 2 h. The 35S::GmAREB transgenic plants were treated by methyl viologen (MV) to identify the oxidative stress tolerance of the GmAREB gene. Statistical analysis showed that transgenic Arabidopsis maintained the higher chlorophyl content (7.3 mg g–1 FW) than that of the wild-type. RT-PCR analysis of transgenic Arabidopsis showed that GmAREB overexpression enhanced the expression of downstream stress-related target genes (ABI1, ABI2) and suppressed the stomatal opening-related target genes (KAT1, KAT2). Therefore, the results above illuminated that GmAREB overexpression effectively regulated the expression of downstream target genes, accelerated the stomatal closure, reduced the moisture to evaporate, decreased chlorophyll degradation and enhanced the tolerance to drought and oxidative stresses in transgenic Arabidopsis.

Key words: ABA, bZIP transcription factor, Arabidopsis, Stress tolerance

[1]Liu Q(刘强), Zhao N-M(赵南明), Yamaguchi-Shinozaki K, Shinozaki K. DREB transcription factors to improve plant resistance in the role. Sci Bull (科学通报), 2000, 45(1): 11–16 (in Chinese)
[2]Yamaguchi-Shinozaki K, Kasuga M, Liu Q, Nakashima K, Sakuma Y, Abe H, Shinwari Z K, Seki M, Shinozaki K. Biological mechanisms of drought stress response. JIRCAS Work Rep, 2002, 9: 1–8
[3]Finkelstein R R, Lynch T J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000, 12: 599–609
[4]Finkelstein R R, Gampala S S, Rock C D. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, 14(suppl): 15–45
[5]Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci, 2002, 7: 106–111
[6]Foster R, Izawa T, Chua N H. Plant bZIP proteins gather at ACGT elements. FASEB J, 1994, 8: 192–200
[7]Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 2: 48–54
[8]Kang J, Choi H, Kim S Y. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell, 2002, 14: 343–357
[9]Kim J B, Kang J Y, Kim S Y. Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J, 2004, 2: 459–466
[10]Guiltinan M J, Marcotte W R Jr, Quatrano R S. A plant leucine zipper protein that recognizes an abscisic and response element. Science, 1990, 250: 267–270
[11]Hobo T, Asada M, Kowyama Y, Hattori T. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA, 1999, 26: 15348–15353
[12]Choi H, Hong J, Kang J, Kim S Y. ABFs, a family of ABA-responsive element binding factors. J Biol Chem, 2000, 21: 1723–1730
[13]Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez Mohammad M, Seki M, Keiichiro H, Masaru O T, Shinozaki K, Yamaguchi-Shinozaki K. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470–3488
[14]Oeda K, Salinas J, Chua N H. A tobacco bZIP transcription activator (TAF-1) binds to G-BOX-like motif conserved in plant genes. EMBO J, 1991, 10: 1793–1802
[15]Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. Abscisic acid–induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 2002, 14: 3177–3189
[16]Xiang Y, Tang N, Du H, Ye H Y, Xiong L Z H. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938–1952
[17]Lu G J, Gao C X, Zheng X N, Han B. Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta, 2009, 229: 605–615
[18]Jin X F, Xiong A S, Peng R H, Liu J G, Gao F, Chen J M, Yao Q H. OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. Biochem Mol Biol Rep, 2010, 43: 34–39
[19]Liao Y, Zou H F, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta, 2008, 228: 225–240
[20]Liao Y, Zhang J S, Chen S Y, Zhang W K. Role of soybean GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol, 2008, 50: 221–230
[21]Wang L(王磊), Zhao J(赵军), Fan Y-L(范云六). Corn Cat1 gene the cis-regulatory elements ABRE2 binding protein ABP9 gene clone and functional analysis. Sci Bull (科学通报), 2002, 15: 1167–1171 (in Chinese)
[22]Casaretto J, Ho T H. The transcription factors HvABI5 and HvVP1 are require for the abscisic acid induction of gene expression in barley Aleurone cells. Plant Cell, 2003, 15: 271–284
[23]Hsieh T H, Li C W, Su R C, Cheng C P, Sanjaya, Tsai Y C, Chan M T. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta, 2010, 231: 1459–1473
[24]Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiol, 2004, 45: 309–317
[25]Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA, 2000, 97: 11632–11637
[26]Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J, 2004, 40: 75–87
[27]Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA, 2006, 103: 1988–1993
[28]Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61: 672–685
[29]Maxwell D P, Wang Y, McIntosh L. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci USA, 1999, 96: 8271–8276
[30]Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498
[1] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[2] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[3] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[4] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[5] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[6] 赵翔,朱自亿,王潇楠,慕世超,张骁. 拟南芥RPT2与RIP1互作调节下胚轴向光弯曲的功能鉴定[J]. 作物学报, 2018, 44(12): 1802-1808.
[7] 尚维,赵申清玉,党江波,郭启高,梁国鲁,杨超,张艳,陈益银. 基于SSR分子标记的Nicotiana tobacum-N. plumbaginifolia异源染色体植株的鉴定与筛选[J]. 作物学报, 2018, 44(11): 1640-1649.
[8] 郝岭,张钰石,段留生,张明才*,李召虎. 玉米ZmBRI1基因的克隆、表达及功能分析[J]. 作物学报, 2017, 43(09): 1261-1271.
[9] 李馨园,杨晔,张丽芳,左师宇,李丽杰,焦健,李晶. 外源ABA对低温胁迫下玉米幼苗内源激素含量及Asr1基因表达的调节[J]. 作物学报, 2017, 43(01): 141-148.
[10] 黄锁,胡利芹,徐东北,李微微,徐兆师,李连城,周永斌,刁现民,贾冠清,马有志,陈明. 谷子转录因子SiNF-YA5通过ABA非依赖途径提高转基因拟南芥耐盐性[J]. 作物学报, 2016, 42(12): 1787-1797.
[11] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[12] 刘睿洋,刘芳,张振乾,官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析[J]. 作物学报, 2016, 42(10): 1471-1478.
[13] 刘凌云,刘浩,赵晶,王艳霞,王棚涛. 拟南芥低叶绿素荧光LCF3基因的克隆与功能分析[J]. 作物学报, 2016, 42(05): 690-695.
[14] 王二辉, 胡利芹, 薛飞洋, 李微微, 徐兆师, 李连城, 周永斌, 马有志, 刁现民, 贾冠清, 陈明, 闵东红. 谷子转录因子基因SiNAC45在拟南芥中对低钾及ABA的响应[J]. 作物学报, 2015, 41(09): 1445-1453.
[15] 胡利芹,薛飞洋,李微微,王二辉,徐兆师,李连城,周永斌,贾冠清,刁现民,马有志,陈明. 谷子非特异性磷脂酶C基因SiNPC4的克隆及功能分析[J]. 作物学报, 2015, 41(07): 1017-1026.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!