欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 975-981.doi: 10.3724/SP.J.1006.2011.00975

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用分子标记辅助选择聚合水稻抗病基因Pi-taPi-bStv-bi

王军, 杨杰, 陈志德, 范方军, 朱金燕, 杨金欢, 仲维功*   

  1. 江苏省农业科学院粮食作物研究所 / 国家水稻改良中心南京分中心,江苏南京210014
  • 收稿日期:2010-11-05 修回日期:2011-03-28 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 仲维功, E-mail: wgzhong0503@yahoo.com.cn
  • 基金资助:

    本研究由江苏省农业科技自主创新基金项目(cx[10]402),国家科技支撑计划重大项目(2006BADO2A03),江苏省科技支撑计划项目(BE2009301-2),国家转基因生物新品种培育科技重大专项(2009ZX08001-005B, 019)和江苏省自然科学基金项目(BK2009321)资助。

Pyramiding Resistance Gene Pi-ta, Pi-b, and Stv-bi by Marker-assisted Selection in Rice (Oryza sativa L.)

WANG Jun,YANG Jie,CHEN Zhi-De,FAN Fang-Jun,ZHU Jin-Yan,YANG Jin-Huan,ZHONG Wei-Gong*   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China
  • Received:2010-11-05 Revised:2011-03-28 Published:2011-06-12 Published online:2011-04-12
  • Contact: 仲维功, E-mail: wgzhong0503@yahoo.com.cn

摘要: 水稻稻瘟病和条纹叶枯病是长江中下游粳稻稻区两大主要病害,选育抗病品种是防治这两大病害最有效的方法。以同时含有稻瘟病抗病基因Pi-taPi-b的武运粳8号,含有条纹叶枯病抗病基因Stv-bi的镇稻42为基因供体配置杂交组合。利用Pi-taPi-b的基因标记和Stv-bi紧密连锁的分子标记对分离世代进行基因位点的检测,结合田间多代选育、抗性鉴定将3个抗病基因同时转育到高产品种中,选育出高产、优质、多抗水稻新品系74121。利用分子标记辅助选择,为选育多抗水稻新品种提供了一种简单、快捷的选择方法,同时也为水稻抗病育种提供了新的遗传资源。

关键词: 水稻, 稻瘟病, 条纹叶枯病, Pi-ta, Pi-b, Stv-bi, 分子标记辅助选择

Abstract: The blast and stripe disease are two major diseases of rice in Yangtze River japonica cultivating area. Breeding resistant cultivars is the most effective way to prevent these two major diseases. Wuyujing 8, containing both Pi-ta and Pi-b, was crossed with Zhendao 42 which carried rice stripe disease resistance gene Stv-bi. Two gene-markers, Pita and Pib, and one SCAR marker tightly linked with Stv-bi were used for marker-assisted selection in each segregating generation. After the multi-generation breeding and identification of resistance, three resistance genes were put together finally. One new rice stable line, 74121 was obtained which conferred good agronomic characteristics containing high-yield, good quality and multi-resistance. These results indicated that marker-assisted selection could not only be a simple and effective way but also provide genetic resources for breeding new rice multi-resistant varieties.

Key words: Rice, Blast, Stripe disease, Pi-ta, Pi-b, Stv-bi, Marker-assisted selection

[1]Wang C-L(王才林), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Chen T(陈涛). Rice breeding for resistance to stripe virus disease. Acta Agron Sin (作物学报), 2008, 34(3): 530–533 (in Chinese with English abstract)
[2]Ou S H. Rice Diseases, 2nd edn. UK: CAB International, 1985. pp 109–201
[3]Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant ansusceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2033–2046
[4]Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna1 L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55–64
[5]Yao S(姚姝), Chen T(陈涛), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Zhao Q-Y(赵庆勇), Zhou L-H(周丽慧), Wang C-L(王才林). Pyramiding of translucent endosperm mutant gene Wx-mq and rice stripe disease resistance gene, Stv-bi by marker-assisted selection in rice (Oryza sativa). Chin J Rice Sci (中国水稻科学), 2010, 24(4): 341–347 (in Chinese with English abstract)
[6]Hayano-Saito Y, Tsuji T, Fujii K, Saito K, Iwasaki M, Saito A. Localization of the rice stripe disease resistance gene, Stv-bi, by graphical genotyping and linkage analyses with molecular markers. Theor Appl Genet, 1998, 96: 1044–1049
[7]Hayano-Saito Y, Saito K, Nakamura S, Kawasaki S, Iwasaki M. Fine physical mapping of the rice stripe resistance gene locus, Stv-bi. Theor Appl Genet, 2000, 101: 59-63
[8]Hayano-Saito Y, Saito K, Fujii K, Touyama T, Tsuji T, Sugiura N, Izawa T, Iwasaki M. SCAR marker for selection of the rice stripe resistance gene Stv-bi. J Breed Res, 2000, 2: 67–72
[9]Luo C-P(罗楚平), Ni L(倪磊), Chen Z-Y(陈志谊), Liu Y-F(刘永锋), Liu Y-Z(刘邮洲), Nie Y-F(聂亚锋). Inoculation technology of rice blast and rice resistance to it in Jiangsu regional tests in 2009. Jiangsu Agric Sci (江苏农业科学), 2009, (6): 178–179 (in Chinese)
[10]Zhou T(周彤), Zhou Y-J(周益军), Cheng Z-B(程兆榜), Yang R-M(杨荣明), Ji J-A(吉健安). Identification of resistance to rice stripe virus in japonica rice varieties and analysis for its inhertance of Zhendao 88. Acta Phytophyl Sin (植物保护学报), 2007, 34(5): 475–479 (in Chinese with English abstract)
[11]Wang Z-H(王忠华), Jia Y-L(贾育林), Wu D-X(吴殿星), Xia Y-W(夏英武). Molecular markers-assisted selection of the rice blast resistance gene Pi-ta. Acta Agron Sin (作物学报), 2004, 30(12): 1259–1265 (in Chinese with English abstract)
[12]Fjellstrom R, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 2004, 44: 1790–1798
[13]Wang J(王军), Yang J(杨杰), Chen Z-D(陈志德), Zhong W-G(仲维功). Development and application of fragrance gene markers in rice. Mol Plant Breed (分子植物育种), 2008, 6(6): 1209–1212 (in Chinese with English abstract)
[14]Lei C-L(雷财林), Ling Z-Z(凌忠专), Wang J-L(王久林), Wan J-M(万建民). Research advanccs in rice breeding for disease resistance. Bull Biol (生物学通报), 2004, 39(11): 4–7 (in Chinese)
[15]Chen H-Q(陈红旗), Chen Z-Q(陈宗祥), Ni S(倪深), Zuo S-M(左示敏), Pan X-B(潘学彪), Zhu X-D(朱旭东). Pyramiding three genes with resistance to blast by marker-assisted selection to improve rice blast resistance of Jin23B. Chin J Rice Sci (中国水稻科学), 2008, 22(1): 23–27 (in Chinese with English abstract)
[16]Chen X-W(陈学伟), Li S-G(李仕贵), Ma Y-Q(马玉清), Li H-Y(黎汉云), Zhou K-D(周开达), Zhu L-H(朱立煌). Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice. Chin J Biotech (生物工程学报), 2004, 20(5):708–713 (in Chinese with English abstract)
[17]Yoshimura S, Yoshimura A, Iwata N, McCouch S R. Tagging and combining bacterial blight resistance gene in rice using RAPD and RFLP markers. Mol Breed, 1995, 1: 375–387
[18]Huang N, Angeles E R, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush G S. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95: 313–320
[19]Deng Q-M(邓其明), Zhou Y-J(周宇爝), Jiang Z-X(蒋昭雪), Wan Y-X(万映秀), Zhao B(赵斌), Yang L(杨丽), Li P(李平). Pyramiding bacterial blight (BB) resistance genes (Xa21, Xa4 and Xa23) into rice and its effect analysis. Acta Agron Sin (作物学报), 2005, 31(9): 1241−1246 (in Chinese with English abstract)
[20]Domingo J P, New T W, Kumaravaclivel N G, Magpantay G B, Hittalmani S, Parco A S, Huang N, Angeles E R, Khush G S. Rice resistant breeding to bacterial blight and blast by molecular marker-assisted selection. Philippine J Crop Sci, 1995, 20: 3
[21]Narayanar N N, Baisakh N, Vera Cruz C M, Gnanamanickam S S, Datta K, Datta S K. Improvement rice resistance to bacterial blight and blast through molecular breeding. Crop Sci, 2002, 42: 2072–2079
[22]Ni D-H(倪大虎), Yi C-X(易成新), Li L(李丽), Wang X-F(汪秀峰), Zhang Y(张毅), Zhao K-J(赵开军), Wang C-L(王春连), Zhang Q(章琦), Wang W-X(王文相), Yang J-B(杨剑波). Developing rice lines resistant to bacterial blight and blast with molecular marker-assisted selection. Acta Agron Sin (作物学报), 2008, 34(1): 100–105 (in Chinese with English abstract)
[23]Sugiura N, Tsuji T, Fujii K, Kato T, Saka N, Touyama T, Hayano-Saito Y, Izawa T. Molecular marker-assisted selection in a recurrent backcross breeding for the incorporation of resistance to rice stripe virus and panicle blast in rice (Oryza sativa L.). Breed Res, 2004, 6: 143–148 (in Japanese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!