欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (06): 991-997.doi: 10.3724/SP.J.1006.2011.00991

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻ygl98黄绿叶突变基因的精细定位与遗传分析

孙小秋1,王兵1,肖云华1,万春美1,邓晓建2,*,王平荣1,*   

  1. 1四川农业大学水稻研究所,四川成都 611130;2四川农业大学 / 西南作物基因资源与遗传改良教育部重点实验室,四川成都 611130
  • 收稿日期:2010-12-09 修回日期:2011-03-06 出版日期:2011-06-12 网络出版日期:2011-04-12
  • 通讯作者: 邓晓建; 王平荣, E-mail: pingrong_wang@yahoo.com.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31071402)和国家转基因生物新品种培育科技重大专项(2009ZX08009-072B)资助。

Genetic Analysis and Fine-Mapping of the ygl98 Yellow-Green Leaf Gene in Rice

SUN Xiao-Qiu1,WANG Bing1,XIAO Yun-Hua1,WAN Chun-Mei1,DENG Xiao-Jian2,*,WANG Ping-Rong1,*   

  1. 1 Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; 2 Key Laboratory of Southwest Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2010-12-09 Revised:2011-03-06 Published:2011-06-12 Published online:2011-04-12
  • Contact: 邓晓建; 王平荣, E-mail: pingrong_wang@yahoo.com.cn

摘要: 通过EMS诱变获得一份遗传稳定的水稻黄绿叶突变体ygl98,该突变体整个生育期呈黄绿色。与野生型相比,突变体的叶绿素和类胡萝卜素含量分别下降45.3%和45.6%,有效穗数和结实率分别减少14.4%和10.7%,株高降低7.4%。透射电镜观察表明,ygl98突变体的叶绿体形状不规则,叶绿体中有许多空的囊泡状结构,类囊体数目减少,每个基粒仅由少数几个类囊体垛叠而成。遗传分析表明,ygl98的突变性状由1对隐性核基因控制。利用(ygl98/浙辐802) F2作为定位群体,将突变基因定位在第3染色体长臂InDel标记I3和I4之间,遗传距离分别为0.07 cM和0.19 cM,两标记之间的物理距离约为44.2 kb,此区间内包含8个预测基因。基因组序列分析发现,ygl98突变体在编码镁离子螯合酶ChlD亚基的OsChlD基因编码区第1 522碱基处(位于第10外显子),碱基G突变为碱基A,从而造成编码蛋白序列第508位的丙氨酸(Ala)突变成苏氨酸(Thr)。该基因是已报道的水稻黄绿叶基因Chlorina-1的等位基因,但突变体表型有明显区别,Chlorina-1突变体在2~3周龄幼苗时开始出现黄绿叶,且该黄绿叶性状仅在苗期表现,而ygl98突变体整个生育期都表现为黄绿叶,这可能是OsChlD基因组序列的突变位点不同造成的。

关键词: 水稻, 黄绿叶突变体, OsChlD, 遗传分析, 精细定位

Abstract: A yellow-green leaf mutant ygl98 was isolated by chemistry mutagenesis. Its whole plant exhibited yellow-green trait throughout the growing period. Compared with its wild-type parent 10079, the contents of chlorophyll and carotenoid decreased by 45.3% and 45.6%; and at the maturity, the number of productive panicles per plant, seed setting rate and plant height reduced by 14.4%, 10.7%, and 7.4%, respectively. The result of electron microscopic observation revealed that the chloroplasts in the ygl98 mutant were out-of-shape. A lot of cystic structures and poor thylakoids were observed in the chloroplasts of the ygl98 mutant, and grana stacks appeared to be less dense compared to those of wild type. Genetic analysis showed that the yellow-green leaf trait of the ygl98 mutant was controlled by one pair of recessive nuclear genes. Genetic mapping of the mutant gene was conducted by using 771 yellow-green leaf individuals from the F2 mapping population of ygl98/Zhefu 802. Finally, the mutant gene was mapped between InDel markers I3 and I4 on the long arm of chromosome 3, with genetic distances of 0.07 and 0.19 cM, respectively, and with physical distance of 44.2 kb, in which eight predicted genes had been annotated. Sequencing analysis of these candidate genes between the mutant and its wild-type revealed the single base change (G1522A) of the gene for magnesium-chelatase ChlD subunit resulted in a missense mutation (A508T) in the encoded product. The same gene mutation caused by OsChlD(Chlorina-1) was documented previously. The Chlorina-1 mutant displays a severe yellowish-green leaf phenotype only at the seedling stage, and the abnormal leaf color is ?rst observed on the leaves of 2- to 3-week-old seedlings, while the ygl98 mutant exhibits yellow-green trait throughout the growing period. The different phenotypes of the two mutants may be caused by the different mutational sites of OsChlD genomic sequence.

Key words: Oryza sativa L., Yellow-green leaf mutant, OsChlD, Genetic analysis, Fine-mapping

[1]Pan R-Z(潘瑞炽), Dong Y-D(董愚得). Plant Physiology (植物生理学). Beijing: Higher Education Press, 1995. pp 77–79 (in Chinese)
[2]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Aunu Rev Genet, 1997, 31: 61–69
[3]Hu Z(胡忠), Peng L-P(彭丽萍), Cai Y-H(蔡永华). A yellow-green nucleus mutant of rice. Acta Genet Sin (遗传学报), 1981, 8(3): 256–261 (in Chinese with English abstract)
[4]Ghirardi M L, Melis A. Chlorophyll b deficiency in soybean mutants effects on photosystem stoichiometry and chlorophyll antenna size. Biochim Biophy, 1988, 932: 130–137
[5]Greene B A, Allred D R, Morishige D T. Hierarchical response of light harvesting chlorophyll proteins in a light-sensitive chlorophyll b-deficient mutant of maize. Plant Physiol, 1998, 87: 357–364
[6]Krol M, Spangfort M D, Huner N P. Chlorophyll a/b binding proteins, pigment conversions and early light induced proteins in a chlorophyll bless barley mutant. Plant Physiol, 1995, 107: 873–883
[7]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 12: 821–832
[8]Falbel T G, Staehelin L A. Partial block in the early steps of the chlorophyll synthesis pathway Pa common feature of chlorophyll-deficient mutants. Plant Physiol, 1996, 97: 311–320
[9]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43(8): 877–880
[10]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandamann G, Mache R, Coupland G, Kuntz M. Mutations in the arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11:57–68
[11]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472
[12]Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol, 2005, 46: 467–473
[13]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337
[14]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906
[15]Dong F-G(董凤高), Zhu X-D(朱旭东), Xiong Z-M(熊阵民), Cheng S-H(程式华), Sun Z-X(孙宗修), Min S-K(闵绍楷). Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker. Chin Rice Sci (中国水稻科学), 1995, 9(2): 65–70 (in Chinese with English abstract)
[16]Beale S I. Enzymes of chlorophyll biosynthesis. Photosynth Res, 1999, 60(1): 47–73
[17]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233–240
[18]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312
[19]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40
[20]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57(6): 805–818
[21]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003
[22]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 1987, 148, 350–382
[23]McCouch S R, Kochert G, Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1998, 76: 815–829
[24]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2 240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279
[25]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice. Mol Gen Genet, 1996, 252: 597–607
[26]He B(何冰), Liu L-L(刘玲珑), Zhang W-W(张文伟), Wan J-M(万建民). Plant leaf color mutants. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 1–9 (in Chinese with English abstract)
[27]Wang P-R(王平荣), Zhang F-T(张帆涛); Gao J-X(高家旭), Sun X-Q(孙小秋), Deng X-J(邓晓建). An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreal-Occident Sin (西北植物学报), 2009, 29(3): 629–636 (in Chinese with English abstract)
[28]Terao T, Yamashita A, Katoh S. Chlorophyll b-deficient mutants of rice I. absorption and fluoresce spectra and chlorophyll a/b ratios. Plant Cell Physiol, 1985, 26: 1361–1367
[29]Hsu B D, Lee Y L. The photosystem II heterogeneity of chlorophyll b-deficient mutants of rice: a fluorescence induction study. Aust J Plant Physiol, 1995, 22: 195–200
[30]Gong H-B(龚红兵), Chen L-M(陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686–689 (in Chinese with English abstract)
[31]Falbel T G, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311–320
[32]Kong M-M(孔萌萌), Yu Q-B(余庆波), Zhang H-Q(张慧绮), Sheng C(盛春), Zhou G-Y(周根余), Yang Z-N(杨仲南). Genetic mapping of rice gene OsALB23 regulating chloroplast development. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(4): 433–437 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!