作物学报 ›› 2011, Vol. 37 ›› Issue (06): 991-997.doi: 10.3724/SP.J.1006.2011.00991
孙小秋1,王兵1,肖云华1,万春美1,邓晓建2,*,王平荣1,*
SUN Xiao-Qiu1,WANG Bing1,XIAO Yun-Hua1,WAN Chun-Mei1,DENG Xiao-Jian2,*,WANG Ping-Rong1,*
摘要: 通过EMS诱变获得一份遗传稳定的水稻黄绿叶突变体ygl98,该突变体整个生育期呈黄绿色。与野生型相比,突变体的叶绿素和类胡萝卜素含量分别下降45.3%和45.6%,有效穗数和结实率分别减少14.4%和10.7%,株高降低7.4%。透射电镜观察表明,ygl98突变体的叶绿体形状不规则,叶绿体中有许多空的囊泡状结构,类囊体数目减少,每个基粒仅由少数几个类囊体垛叠而成。遗传分析表明,ygl98的突变性状由1对隐性核基因控制。利用(ygl98/浙辐802) F2作为定位群体,将突变基因定位在第3染色体长臂InDel标记I3和I4之间,遗传距离分别为0.07 cM和0.19 cM,两标记之间的物理距离约为44.2 kb,此区间内包含8个预测基因。基因组序列分析发现,ygl98突变体在编码镁离子螯合酶ChlD亚基的OsChlD基因编码区第1 522碱基处(位于第10外显子),碱基G突变为碱基A,从而造成编码蛋白序列第508位的丙氨酸(Ala)突变成苏氨酸(Thr)。该基因是已报道的水稻黄绿叶基因Chlorina-1的等位基因,但突变体表型有明显区别,Chlorina-1突变体在2~3周龄幼苗时开始出现黄绿叶,且该黄绿叶性状仅在苗期表现,而ygl98突变体整个生育期都表现为黄绿叶,这可能是OsChlD基因组序列的突变位点不同造成的。
[1]Pan R-Z(潘瑞炽), Dong Y-D(董愚得). Plant Physiology (植物生理学). Beijing: Higher Education Press, 1995. pp 77–79 (in Chinese) [2]Suzuki J Y, Bollivar D W, Bauer C E. Genetic analysis of chlorophyll biosynthesis. Aunu Rev Genet, 1997, 31: 61–69 [3]Hu Z(胡忠), Peng L-P(彭丽萍), Cai Y-H(蔡永华). A yellow-green nucleus mutant of rice. Acta Genet Sin (遗传学报), 1981, 8(3): 256–261 (in Chinese with English abstract) [4]Ghirardi M L, Melis A. Chlorophyll b deficiency in soybean mutants effects on photosystem stoichiometry and chlorophyll antenna size. Biochim Biophy, 1988, 932: 130–137 [5]Greene B A, Allred D R, Morishige D T. Hierarchical response of light harvesting chlorophyll proteins in a light-sensitive chlorophyll b-deficient mutant of maize. Plant Physiol, 1998, 87: 357–364 [6]Krol M, Spangfort M D, Huner N P. Chlorophyll a/b binding proteins, pigment conversions and early light induced proteins in a chlorophyll bless barley mutant. Plant Physiol, 1995, 107: 873–883 [7]Falbel T G, Meehl J B, Staehelin L A. Severity of mutant phenotype in a series of chlorophyll-deficient wheat mutants depends on light intensity and the severity of the block in chlorophyll synthesis. Plant Physiol, 1996, 12: 821–832 [8]Falbel T G, Staehelin L A. Partial block in the early steps of the chlorophyll synthesis pathway Pa common feature of chlorophyll-deficient mutants. Plant Physiol, 1996, 97: 311–320 [9]Zhao Y, Du L F, Yang S H, Li S C, Zhang Y Z. Chloroplast composition and structure differences in a chlorophyll-reduced mutant of oilseed rape seedlings. Acta Bot Sin, 2001, 43(8): 877–880 [10]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandamann G, Mache R, Coupland G, Kuntz M. Mutations in the arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11:57–68 [11]Jung K H, Hur J, Ryu C H, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol, 2003, 44: 463–472 [12]Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N. Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls. Plant Cell Physiol, 2005, 46: 467–473 [13]Zhang H, Li J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol, 2006, 62: 325–337 [14]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902–906 [15]Dong F-G(董凤高), Zhu X-D(朱旭东), Xiong Z-M(熊阵民), Cheng S-H(程式华), Sun Z-X(孙宗修), Min S-K(闵绍楷). Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker. Chin Rice Sci (中国水稻科学), 1995, 9(2): 65–70 (in Chinese with English abstract) [16]Beale S I. Enzymes of chlorophyll biosynthesis. Photosynth Res, 1999, 60(1): 47–73 [17]Nagata N, Tanaka R, Satoh S, Tanaka A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell, 2005, 17: 233–240 [18]Beale S I. Green genes gleaned. Trends Plant Sci, 2005, 10: 309–312 [19]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40 [20]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005, 57(6): 805–818 [21]Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice. Plant Physiol, 2010, 153: 994–1003 [22]Lichtenthaler H K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Methods in Enzymology, 1987, 148, 350–382 [23]McCouch S R, Kochert G, Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1998, 76: 815–829 [24]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2 240 new SSR markers for rice (Oryza sativa L.). DNA Res, 2002, 9: 257–279 [25]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice. Mol Gen Genet, 1996, 252: 597–607 [26]He B(何冰), Liu L-L(刘玲珑), Zhang W-W(张文伟), Wan J-M(万建民). Plant leaf color mutants. Plant Physiol Commun (植物生理学通讯), 2006, 42(1): 1–9 (in Chinese with English abstract) [27]Wang P-R(王平荣), Zhang F-T(张帆涛); Gao J-X(高家旭), Sun X-Q(孙小秋), Deng X-J(邓晓建). An overview of chlorophyll biosynthesis in higher plants. Acta Bot Boreal-Occident Sin (西北植物学报), 2009, 29(3): 629–636 (in Chinese with English abstract) [28]Terao T, Yamashita A, Katoh S. Chlorophyll b-deficient mutants of rice I. absorption and fluoresce spectra and chlorophyll a/b ratios. Plant Cell Physiol, 1985, 26: 1361–1367 [29]Hsu B D, Lee Y L. The photosystem II heterogeneity of chlorophyll b-deficient mutants of rice: a fluorescence induction study. Aust J Plant Physiol, 1995, 22: 195–200 [30]Gong H-B(龚红兵), Chen L-M(陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686–689 (in Chinese with English abstract) [31]Falbel T G, Staehelin L A. Partial blocks in the early steps of the chlorophyll synthesis pathway: A common feature of chlorophyll b-deficient mutants. Physiol Plant, 1996, 97: 311–320 [32]Kong M-M(孔萌萌), Yu Q-B(余庆波), Zhang H-Q(张慧绮), Sheng C(盛春), Zhou G-Y(周根余), Yang Z-N(杨仲南). Genetic mapping of rice gene OsALB23 regulating chloroplast development. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2006, 32(4): 433–437 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[13] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[14] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|