欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (04): 657-664.doi: 10.3724/SP.J.1006.2012.00657

• 耕作栽培·生理生化 • 上一篇    下一篇

小麦叶绿素荧光参数叶位差异及其与植株氮含量的关系

冯伟,李晓,王永华,王晨阳,郭天财*   

  1. 河南农业大学 / 国家小麦工程技术研究中心,河南郑州 450002
  • 收稿日期:2011-09-01 修回日期:2012-01-19 出版日期:2012-04-12 网络出版日期:2012-02-13
  • 通讯作者: 郭天财, Email: tcguo888@sina.com
  • 基金资助:

    本研究由国家自然科学基金项目(30900867)和北方主要作物抗旱节水综合节水研究与区域示范专项(200903007)经费资助。

Difference of Chlorophyll Fluorescence Parameters in Leaves at Different Positions and Its Relationship with Nitrogen Content in Winter Wheat Plant

FENG Wei,Li Xiao,WANG Yong-Hua,WANG Chen-Yang,GUO Tian-Cai*   

  1. Henan Agricultural University / National Engineering Research Center for Wheat, Zhengzhou 450002, China
  • Received:2011-09-01 Revised:2012-01-19 Published:2012-04-12 Published online:2012-02-13
  • Contact: 郭天财, Email: tcguo888@sina.com

摘要: 以中蛋白质含量小麦品种矮抗58和高蛋白质含量品种郑麦366为试验材料,2008—2010年连续2个生长季进行了施氮梯度下(0、90、180和270 kg hm-2)的田间试验。在关键生育时期同步测定叶片荧光参数、叶和茎生物质量及氮含量,建立了基于叶位差的小麦植株氮含量荧光估算模型。结果表明,在小麦旺盛生长的拔节至孕穗期叶绿素荧光参数FmFvFv/FmFv/Fo与对应叶片氮含量的相关系数分别为0.557、0.6010.619和0.633,均达极显著水平(P<0.01)。顶三叶间荧光参数差异较小,随施氮水平提高,顶部第4叶荧光参数与顶三叶间差异逐渐缩小,说明其对增施氮肥反应敏感。顶部第4叶与顶部第1叶间的荧光参数差异(LPD4-1)可较好拟合小麦拔节期植株氮含量变化,Fv/FoFv/Fm方程决定系数R2分别为0.644 (P<0.001)和0.651 (P<0.001);顶部第4叶与顶部第2叶间的荧光参数差异(LPD4-2)方程拟合决定系数有所降低,分别为0.626 (P<0.002)和0.592 (P<0.005);而顶部第4叶与顶三叶之间的差异(LPD4-n)与小麦孕穗期植株氮含量间呈显著线性关系,其FoFvFm方程决定系数分别为0.726 (P<0.001)、0.791 (P<0.001)和0.784 (P<0.001)。独立数据检验结果表明,小麦拔节期对Fv/FoFv/Fm的LPD4-1预测精度R2分别为0.844( P<0.001)和0.828 (P<0.001),相对误差(RE)分别为13.0%和16.7%,而LPD4-2估算植株氮含量精度有所降低,R2分别为0.793 (P<0.001)和0.813 (P<0.001),RE分别为16.9%和18.4%。小麦孕穗期对FvFm的LPD4-n预测方程的R2分别为0.831 (P<0.001)和0.815 (P<0.001),RE分别为13.2%和16.4%。比较而言,小麦拔节期Fv/Fo的LPD4-1和孕穗期Fv的LPD4-n可更好地用于评估不同条件下植株氮含量的变化,为施肥调控提供决策依据。

关键词: 冬小麦, 植株氮含量, 叶位, 荧光参数

Abstract: For diagnosing nitrogen (N) nutrient status in winter wheat plant based on fluorescence parameters of leaves, two cultivars with Aikang 58 (mid-protein content) and Zhengmai 366 (high-protein content) were used in experiments with N application rates of 0, 90, 180, and 270 kg ha-1 in 2008–2009 and 2009–2010 growing seasons. The fluorescence parameters were measured in the first, second, third, and fourth leaves from top of plant from jointing to maturity stage. The N contents and biomasses of leaf and culm were determined through destructive sampling and chemica1 assay. The leaf N contents at different 1eaf positions were significantlycorrelated with fluorescence parameters from jointing to booting stage (P < 0.01). The correlation coefficients of N content with Fm, Fv, Fv/Fm, and Fv/Fo were 0.557, 0.601, 0.619, and 0.633, respectively. The fluorescence parameters of the top three leaves had small differences, which were much higher than those of the fourth leaf from the top. However, the differences reduced gradually with the increase of N application rate. This indicated a sensitive response of leaf position to N application. The differences of Fv/Fo and Fv/Fm between the fourth and the first leaves (LPD4-1) were significantly correlated with N content in plant (PNC) at jointing stage (R2 = 0.644 for Fv/Fo and R2 = 0.651 for Fv/Fm); whereas, the differences of Fv/Fo and Fv/Fm between the fourth and the second leaves (LPD4-2) had less accurate predictions with smaller R2 values (R2 = 0.626 for Fv/Fo and R2 = 0.592 for Fv/Fm). At booting stage, linear equations were obtained for Fo, Fv, and Fm differences (LPD4-n) between the fourth and the top three leaves (R2 = 0.726 for Fo, R2 = 0.791 for Fv, and R2 = 0.784 for Fm). Using independent datasets to predict PNC at jointing stage with the LPD4-1 and LPD4-2 equations based on Fv/Fo and Fv/Fm, the R2 values for LPD4-1 were 0.844 and 0.828 with relative errors of 13.0% and 16.7%, respectively; and the R2 values for LPD4-2 were 0.793 and 0.813 with relative errors of 16.9% and 18.4%, respectively. The result showed that the estimations were reliable. At booting stage, the best prediction of PNC was from the LPD4-n equation based on Fv and Fm, and R2 values were 0.831 and 0.815 with relative errors 13.2% and 16.4%, respectively. In conclusion, the LPD4-1 equation based on Fv/Fo at jointing stage and the LPD4-n model based on Fv at booting stage are applicable to estimate PNC of wheat.

Key words: Winter wheat, Nitrogen content in plant, Leaf position, F1uorescence parameters

[1]Zhang W-L(张维理), Tian Z-X(田哲旭), Zhang N(张宁), Li X-Q(李晓齐). Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in north china. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 80–86 (in Chinese with English abstract)

[2]Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron J, 2006, 98: 938–945

[3]Subedi K D, Ma B L, Xue A G. Planting date and nitrogen effects on Fusarium head blight and leaf spotting diseases in spring wheat. Agron J, 2007, 99: 113–121

[4]Drinkwater L E, Snapp S S. Nutrients in agroecosystems: rethinking the management paradigm. Advances in gronomy, 2007, 92: 163–186

[5]Wu L-H(吴良欢), Tao Q-N(陶勤南). Nitrogen fertilizer application based on the diagnosis of nitrogen nutrition of rice plants (Oryza sativa L.) using chlorophyll meter. J Zhejiang Agric Univ (浙江农业大学学报), 1999, 25(2): 135–138 (in Chinese with English abstract)

[6]Reeves D W. Determination of wheat nitrogen status with a hand-held chlorophyll meter: influence of management practices. J Plant Nutr, 1993, 16: 781–796

[7]Li G-H(李刚华), Xue L-H(薛利红), You J(尤娟), Wang S-H(王绍华), Ding Y-F(丁艳锋), Wu H(吴昊), Yang W-X(杨文祥). Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice. Sci Agric Sin (中国农业科学), 2007, 40(6): 1127–1134 (in Chinese with English abstract)

[8]Feng W, Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur J Agron, 2008, 28: 394–404

[9]Yao X(姚霞), Zhu Y(朱艳), Tian Y-C(田永超), Feng W(冯伟), Cao W-X(曹卫星). Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves. Sci Agric Sin (中国农业科学), 2009, 42(8): 2716–2725 (in Chinese with English abstract)

[10]Yu H(鱼欢), Wu H-S(邬华松), Wang Z-J(王之杰). Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agron Sin (作物学报), 2010, 36(5): 840−847 (in Chinese with English abstract)

[11]Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron, 2003, 19: 611–618

[12]Graeff S, Pfenning J, Claupein W, Liebig H P. Evaluation of image analysis to determine the N-fertilizer demand of broccoli plants (Brassica oleracea convar. botrytis var. italica). Adv Optical Technol, 2008, doi: 10.1155/2008/359760

[13]Guo T-C(郭天财), Feng W(冯伟), Zhao H-J(赵会杰), Xue G-D(薛国典), Wang H-C(王化岑), Wang Y-H(王永华), Yao Z-J(姚战军). Photosynthetic characteristics of flag leaves and nitrogen effects in two w inter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2004, 30(2): 115–121 (in Chinese with English abstract)

[14]McMurtrey III J E, Chappelle E W, Kim M S, Meisinger J J, Corp L A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens Environ, 1994, 47: 36–44

[15]Schächtl J, Huber G, Maidl F X, Sticksel E, Schulz J, Haschberger P. Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precision Agric, 2005, 6: 143–156

[16]Zhang Q-D(张其德), Lu C-M(卢从明), Zhang Q(张群), Bai K-Z(白克智), Kuang T-Y(匡廷云). Effects of doubled CO2 on the fluorescence induction kinetics parameters of soybean leaves grown at different nitrogen nutrition levels. Plant Nutr Fert Sci (植物营养与肥料学报), 1997, 3(1): 24–30 (in Chinese with English abstract)

[17]Li X(李霞), Liu Y-L(刘友良), Jiao D-M(焦德茂). The relationship between diurnal variation of fluorescence parameters and characteristics of adaptation to light intensity in leaves of different rice varieties with high yield (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(2): 145–153 (in Chinese with English abstract)

[18]Gitelson A A, Buschmann C, Lichtenthaler H K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens Environ, 1999, 69: 296–302

[19]Li S-C(李绍长), Hu C-H(胡昌浩), Gong J(龚江), Dong S-T(董树亭), Dong Z-X(董志新). Effects of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize (Zea mays L.). Acta Agron Sin(作物学报), 2004, 30(4): 365–370 (in Chinese with English abstract)

[20]Ma J-F(马吉锋), Zhu Y(朱艳), Yao X(姚霞), Tian Y-C(田永超), Liu X-J(刘小军), Cao W-X(曹卫星). Relationship between leaf nitrogen contents and fluorescence parameters in wheat. Acta Agron Sin (作物学报), 2007, 33(2): 297–303 (in Chinese with English abstract)

[21]Jiang L-G(江立庚), Cao W-X(曹卫星), Jiang D(姜东), Dai T-B(戴廷波), Dong D-F(董登峰), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云). Distribution of leaf nitrogen, amino acids and chlorophyll in leaves of different positions and relationship with nitrogen nutrition diagnosis in rice. Acta Agron Sin (作物学报), 2004, 30(8): 739–744 (in Chinese with English abstract)

[22]Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Jiang D(姜东), Cao W-X(曹卫星). Temporal and spatial distribution of leaf nitrogen content and its relationship with plant nitrogen status in winter wheat. Acta Agron Sin (作物学报), 2006, 32(11): 1717–1722 (in Chinese with English abstract)

[23]Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Res, 2006, 96: 224–234

[24]Wang S-H(王绍华), Cao W-X(曹卫星), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant. Sci Agric Sin (中国农业科学), 2002, 35(12): 1461–1466 (in Chinese with English abstract)
[1] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[2] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[3] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[4] 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359.
[5] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[6] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[7] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[8] 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936.
[9] 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007.
[10] 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556.
[11] 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289.
[12] 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415.
[13] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[14] 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966.
[15] 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!