作物学报 ›› 2012, Vol. 38 ›› Issue (04): 657-664.doi: 10.3724/SP.J.1006.2012.00657
冯伟,李晓,王永华,王晨阳,郭天财*
FENG Wei,Li Xiao,WANG Yong-Hua,WANG Chen-Yang,GUO Tian-Cai*
摘要: 以中蛋白质含量小麦品种矮抗58和高蛋白质含量品种郑麦366为试验材料,2008—2010年连续2个生长季进行了施氮梯度下(0、90、180和270 kg hm-2)的田间试验。在关键生育时期同步测定叶片荧光参数、叶和茎生物质量及氮含量,建立了基于叶位差的小麦植株氮含量荧光估算模型。结果表明,在小麦旺盛生长的拔节至孕穗期叶绿素荧光参数Fm、Fv、Fv/Fm和Fv/Fo与对应叶片氮含量的相关系数分别为0.557、0.601、0.619和0.633,均达极显著水平(P<0.01)。顶三叶间荧光参数差异较小,随施氮水平提高,顶部第4叶荧光参数与顶三叶间差异逐渐缩小,说明其对增施氮肥反应敏感。顶部第4叶与顶部第1叶间的荧光参数差异(LPD4-1)可较好拟合小麦拔节期植株氮含量变化,Fv/Fo和Fv/Fm方程决定系数R2分别为0.644 (P<0.001)和0.651 (P<0.001);顶部第4叶与顶部第2叶间的荧光参数差异(LPD4-2)方程拟合决定系数有所降低,分别为0.626 (P<0.002)和0.592 (P<0.005);而顶部第4叶与顶三叶之间的差异(LPD4-n)与小麦孕穗期植株氮含量间呈显著线性关系,其Fo、Fv和Fm方程决定系数分别为0.726 (P<0.001)、0.791 (P<0.001)和0.784 (P<0.001)。独立数据检验结果表明,小麦拔节期对Fv/Fo和Fv/Fm的LPD4-1预测精度R2分别为0.844( P<0.001)和0.828 (P<0.001),相对误差(RE)分别为13.0%和16.7%,而LPD4-2估算植株氮含量精度有所降低,R2分别为0.793 (P<0.001)和0.813 (P<0.001),RE分别为16.9%和18.4%。小麦孕穗期对Fv和Fm的LPD4-n预测方程的R2分别为0.831 (P<0.001)和0.815 (P<0.001),RE分别为13.2%和16.4%。比较而言,小麦拔节期Fv/Fo的LPD4-1和孕穗期Fv的LPD4-n可更好地用于评估不同条件下植株氮含量的变化,为施肥调控提供决策依据。
[1]Zhang W-L(张维理), Tian Z-X(田哲旭), Zhang N(张宁), Li X-Q(李晓齐). Investigation of nitrate pollution in ground water due to nitrogen fertilization in agriculture in north china. Plant Nutr Fert Sci (植物营养与肥料学报), 1995, 1(2): 80–86 (in Chinese with English abstract) [2]Zhao R F, Chen X P, Zhang F S, Zhang H L, Schroder J, Römheld V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agron J, 2006, 98: 938–945 [3]Subedi K D, Ma B L, Xue A G. Planting date and nitrogen effects on Fusarium head blight and leaf spotting diseases in spring wheat. Agron J, 2007, 99: 113–121[4]Drinkwater L E, Snapp S S. Nutrients in agroecosystems: rethinking the management paradigm. Advances in gronomy, 2007, 92: 163–186[5]Wu L-H(吴良欢), Tao Q-N(陶勤南). Nitrogen fertilizer application based on the diagnosis of nitrogen nutrition of rice plants (Oryza sativa L.) using chlorophyll meter. J Zhejiang Agric Univ (浙江农业大学学报), 1999, 25(2): 135–138 (in Chinese with English abstract)[6]Reeves D W. Determination of wheat nitrogen status with a hand-held chlorophyll meter: influence of management practices. J Plant Nutr, 1993, 16: 781–796 [7]Li G-H(李刚华), Xue L-H(薛利红), You J(尤娟), Wang S-H(王绍华), Ding Y-F(丁艳锋), Wu H(吴昊), Yang W-X(杨文祥). Spatial distribution of leaf N content and SPAD value and determination of the suitable leaf for N diagnosis in rice. Sci Agric Sin (中国农业科学), 2007, 40(6): 1127–1134 (in Chinese with English abstract) [8]Feng W, Yao X, Zhu Y, Tian Y C, Cao W X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur J Agron, 2008, 28: 394–404 [9]Yao X(姚霞), Zhu Y(朱艳), Tian Y-C(田永超), Feng W(冯伟), Cao W-X(曹卫星). Research of the optimum hyperspectral vegetation indices on monitoring the nitrogen content in wheat leaves. Sci Agric Sin (中国农业科学), 2009, 42(8): 2716–2725 (in Chinese with English abstract) [10]Yu H(鱼欢), Wu H-S(邬华松), Wang Z-J(王之杰). Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agron Sin (作物学报), 2010, 36(5): 840−847 (in Chinese with English abstract) [11]Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur J Agron, 2003, 19: 611–618[12]Graeff S, Pfenning J, Claupein W, Liebig H P. Evaluation of image analysis to determine the N-fertilizer demand of broccoli plants (Brassica oleracea convar. botrytis var. italica). Adv Optical Technol, 2008, doi: 10.1155/2008/359760[13]Guo T-C(郭天财), Feng W(冯伟), Zhao H-J(赵会杰), Xue G-D(薛国典), Wang H-C(王化岑), Wang Y-H(王永华), Yao Z-J(姚战军). Photosynthetic characteristics of flag leaves and nitrogen effects in two w inter wheat cultivars with different spike type. Acta Agron Sin (作物学报), 2004, 30(2): 115–121 (in Chinese with English abstract) [14]McMurtrey III J E, Chappelle E W, Kim M S, Meisinger J J, Corp L A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens Environ, 1994, 47: 36–44 [15]Schächtl J, Huber G, Maidl F X, Sticksel E, Schulz J, Haschberger P. Laser-induced chlorophyll fluorescence measurements for detecting the nitrogen status of wheat (Triticum aestivum L.) canopies. Precision Agric, 2005, 6: 143–156[16]Zhang Q-D(张其德), Lu C-M(卢从明), Zhang Q(张群), Bai K-Z(白克智), Kuang T-Y(匡廷云). Effects of doubled CO2 on the fluorescence induction kinetics parameters of soybean leaves grown at different nitrogen nutrition levels. Plant Nutr Fert Sci (植物营养与肥料学报), 1997, 3(1): 24–30 (in Chinese with English abstract) [17]Li X(李霞), Liu Y-L(刘友良), Jiao D-M(焦德茂). The relationship between diurnal variation of fluorescence parameters and characteristics of adaptation to light intensity in leaves of different rice varieties with high yield (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(2): 145–153 (in Chinese with English abstract) [18]Gitelson A A, Buschmann C, Lichtenthaler H K. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sens Environ, 1999, 69: 296–302 [19]Li S-C(李绍长), Hu C-H(胡昌浩), Gong J(龚江), Dong S-T(董树亭), Dong Z-X(董志新). Effects of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize (Zea mays L.). Acta Agron Sin(作物学报), 2004, 30(4): 365–370 (in Chinese with English abstract) [20]Ma J-F(马吉锋), Zhu Y(朱艳), Yao X(姚霞), Tian Y-C(田永超), Liu X-J(刘小军), Cao W-X(曹卫星). Relationship between leaf nitrogen contents and fluorescence parameters in wheat. Acta Agron Sin (作物学报), 2007, 33(2): 297–303 (in Chinese with English abstract)[21]Jiang L-G(江立庚), Cao W-X(曹卫星), Jiang D(姜东), Dai T-B(戴廷波), Dong D-F(董登峰), Gan X-Q(甘秀芹), Wei S-Q(韦善清), Xu J-Y(徐建云). Distribution of leaf nitrogen, amino acids and chlorophyll in leaves of different positions and relationship with nitrogen nutrition diagnosis in rice. Acta Agron Sin (作物学报), 2004, 30(8): 739–744 (in Chinese with English abstract) [22]Qin X-D(秦晓东), Dai T-B(戴廷波), Jing Q(荆奇), Jiang D(姜东), Cao W-X(曹卫星). Temporal and spatial distribution of leaf nitrogen content and its relationship with plant nitrogen status in winter wheat. Acta Agron Sin (作物学报), 2006, 32(11): 1717–1722 (in Chinese with English abstract) [23]Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Res, 2006, 96: 224–234 [24]Wang S-H(王绍华), Cao W-X(曹卫星), Wang Q-S(王强盛), Ding Y-F(丁艳锋), Huang P-S(黄丕生), Ling Q-H(凌启鸿). Positional distribution of leaf color and diagnosis of nitrogen nutrition in rice plant. Sci Agric Sin (中国农业科学), 2002, 35(12): 1461–1466 (in Chinese with English abstract) |
[1] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[2] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[3] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
[4] | 李静, 王洪章, 刘鹏, 张吉旺, 赵斌, 任佰朝. 夏玉米不同栽培模式花后叶片光合性能的差异[J]. 作物学报, 2021, 47(7): 1351-1359. |
[5] | 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540. |
[6] | 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267. |
[7] | 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853. |
[8] | 雒文鹤, 师祖姣, 王旭敏, 李军, 王瑞. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924-936. |
[9] | 马艳明, 冯智宇, 王威, 张胜军, 郭营, 倪中福, 刘杰. 新疆冬小麦品种农艺及产量性状遗传多样性分析[J]. 作物学报, 2020, 46(12): 1997-2007. |
[10] | 马艳明, 娄鸿耀, 陈朝燕, 肖菁, 徐麟, 倪中福, 刘杰. 新疆冬小麦地方品种与育成品种基于SNP芯片的遗传多样性分析[J]. 作物学报, 2020, 46(10): 1539-1556. |
[11] | 侯红乾,林洪鑫,刘秀梅,冀建华,刘益仁,蓝贤瑾,吕真真,周卫军. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响[J]. 作物学报, 2020, 46(02): 280-289. |
[12] | 张力,陈阜,雷永登. 近60年河北省冬小麦干旱风险时空规律[J]. 作物学报, 2019, 45(9): 1407-1415. |
[13] | 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249. |
[14] | 姜丽娜,马静丽,方保停,马建辉,李春喜,王志敏,蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966. |
[15] | 何昕楠,林祥,谷淑波,王东. 微喷补灌对麦田土壤物理性状及冬小麦耗水和产量的影响[J]. 作物学报, 2019, 45(6): 879-892. |
|