作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1400-1408.doi: 10.3724/SP.J.1006.2013.01400

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇



  1. 1甘肃农业大学农学院, 甘肃兰州 730070; 2河西学院农业与生物技术学院, 甘肃张掖734000; 3甘肃省农业科学院作物研究所, 甘肃兰州 730070;
    4 Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. S7N5A8; 5西北师范大学生命科学学院, 甘肃兰州 730070
  • 收稿日期:2012-12-23 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-22
  • 通讯作者: 孙万仓, E-mail: wangcangsun@yahoo.com.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10A104), 国家公益性行业(农业)科研专项经费项目(200903002-04)和国家现代农业产业技术体系建设专项(CARS-13)资助。

Cloning, Expression, and Activity Analysis of Ascorbate Peroxidase (APX) Gene from Winter Turnip Rape (Brassica campestris L.)

ZENG Xiu-Cun1,2,SUN Wan-Cang1,*,FANG Yan1,LIU Zi-Gang1,DONG Yun3,SUN Jia4,WU Jun-Yan1,ZHANG Peng-Fei1,SHI Peng-Hui1,KONG De-Jing1,ZHANG Teng-Guo5,HE Li1,ZHAO Cai-Xia1   

  1. 1 Agricultural College, Gansu Agricultural University, Lanzhou 730070, China; 2 College of Agronomy and Biotechnology, Hexi University, Zhangye 734000, China; 3 Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070 China; 4 Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. S7N5A8; 5 College of Life Science, Northwest Normal University, Lanzhou 730070, China
  • Received:2012-12-23 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-22
  • Contact: 孙万仓, E-mail: wangcangsun@yahoo.com.cn


抗坏血酸过氧化物酶(APX)是一种在逆境条件下清除细胞内氧自由基、增强植物抗逆性的关键酶。本研究根据已发表植物抗坏血酸过氧化物酶基因APX的同源保守序列设计引物, 采用RT-PCR扩增超强抗寒白菜型冬油菜陇油7号的DNA, 获得APX基因开放阅读框, 长度为753 bp, 编码250个氨基酸残基, 推导的氨基酸序列具有APX蛋白的典型特征。生物信息学分析显示, 与已报道的大白菜的APX氨基酸序列同源性达到99%, 该酶蛋白具有高度的进化保守性, 其保守序列属于植物的POD超家族, APX相对分子质量和理论等电点依次为27.7 kD5.58APX基因无信号肽, 是一个亲水性蛋白, 可推测其定位于细胞质中;二级结构预测表明陇油7号的APX是由不规则卷曲和α-螺旋组成的稳定蛋白。实时荧光定量PCR和酶活性分析显示, 该基因表达和酶活性受低温胁迫诱导, 表明该基因在白菜型冬油菜陇油7号适应低温胁迫过程中发挥重要作用。

关键词: 白菜型油菜, 低温, APX基因克隆, 表达分析, APX活性


Ascorbate Peroxidase (APX) is a key enzyme which eliminates oxygen free radicals and increases plant resistance in adverse circumstances. The complete open reading frame of APX gene was cloned from an extremely low temperature (–32℃) resistant winter turnip rape (Brassica campestris L.) cultivar Longyou 7 using the method of reverse transcription PCR (RT-PCR). The primers were designed according to the published APX cDNA sequences. The sequence of APX from B. campestris L. was 753 bp, encoding a protein of 250 amino acid residues with a predicted molecular weight of 27.7 kD and a theoretical pI of 5.58. Bioinformatics analysis showed that the predicted APX protein contained a conserved amino acid sequence corresponding to the plant peroxidase (POD) superfamily. The APX had no signal peptide and was a hydrophilic protein locating in cytoplasm. The prediction of the second structures indicated theAPX was a steady protein with more random coils and α-helices. The expression analysis of APX gene using real time RT-PCR and the activity of APX in response to lower temperature showed that the APX could be induced and the activity of APX could be changed by lower temperature. In conclusion, APX gene might play a role in cold tolerance of the B. campestris L. cultivar Longyou 7.

Key words: Winter rape (Brassica compestris L.), Lower temperature, APX gene cloning, Expression analysis, Activity of APX

[1]Li N(李娜), Lu H(陆海). Research progress in ascorbate peroxidase gene family in plants. J Chengdu Univ (Nat Sci Edn)(成都大学学报?自然科学版), 2011, 30(2): 97–101 (in Chinese with English abstract)

[2]Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 2000, 57: 779–795

[3]Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants. Plant Physiol, 1992, 85: 235–241

[4]Sun X-C(孙学成), Tan Q-L(谭启玲), Hu C-X(胡承孝), Gan Q-Q(甘巧巧), Yi C-C(易长城). Effects of molybdenum on antioxidative enzymes in winter wheat under low temperature stress. Sci Agric Sin (中国农业科学), 2006, 39(5): 952–959 (in Chinese with English abstract)

[5]Sun W-H(孙卫红), Wang W-Q(王伟青), Meng Q-W(孟庆伟). Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants. Plant Physiol Commun (植物生理学通讯), 2005, 41(2): 143–147 (in Chinese)

[6]Zhang W-J(张维静), Lu H(陆海), Du X-H(杜希华). The function of ascorbate peroxidases in plant resistance to oxidative stress. J Shandong Norm Univ(Nat Sci)(山东师范大学学报?自然科学版), 2008, 23(4): 113–115 (in Chinese with English abstract)

[7]Ma C-L(马长乐), Wang P-P(王萍萍), Cao Z-Y(曹子谊), Zhao Y-X(赵彦修), Zhang H(张慧). cDNA cloning and gene expression of APX in Suaeda salsain response to salt stress. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2002, 28(4): 261–266 (in Chinese with English abstract)

[8]Wang C(王超),Yang C-P(杨传平),Wang Y-C(王玉成). Cloning and expression analysis of an APX gene from Betula platyphylla. J Northeast For Univ (东北林业大学学报), 2009, 37(3): 79–81 (in Chinese with English abstract)

[9]Hu L X, Li H Y, Pang H C, Fu J M. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. J Plant Physiol, 2012, 169: 146–156

[10]Wang Y J, Wisniewski M, Meilan R. Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress. J Am Soc Hort Sci, 2005, 130: 167–173

[11]Prasad T K. Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings. Plant Physiol, 1997, 114: 1369–1376

[12]Gechev T, Willekens H, Montagu M V, Inze D, Camp W V, Toneva V, Minkov I. Different responses of tobacco antioxidant enzymes to light and chilling stress. J Plant Physiol, 2003, 160: 509–515

[13]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods, 2001, 25: 402–408

[14]Zou Q(邹琦). Experimental guidance for plant physiology. Beijing: China Agriculture Press, 2000. pp 171–172 (in Chinese)

[15]Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti V B, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F. ROS signaling: the new wave? Trends Plant Sci, 2011, 16: 300–309

[16]Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9: 490–498

[17]Miao Y-C(苗雨晨), Bai L(白玲), Miao C(苗琛), Chen J(陈珈), Song C-P(宋纯鹏). Progress in plant glutathione peroxidase. Chin Bull Bot (植物学通报), 2005, 22(3): 350–356 (in Chinese with English abstract)

[18]Yabuta Y, Motoki T, Yoshimura K. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photooxidative stress. Plant J, 2002, 32: 915–925

[19]Jing M, Herbette S, Vandame M, Kositsup B, Kasemsap P, Cavaloc E, Julien J L, Améglio T, Roeckel-Drevet P. Effect of chilling on photosynthesis and antioxidant enzymes in hevea brasiliensis muell. Arg Biomedical Life Sci, 2009, 23: 863–874 (in Chinese)

[20]Zhang J-J(张俊杰), Sun W-C(孙万仓), Li X-C(李学才), Fang Y(方彦), Zhang P-F(张朋飞), Jiang H-Y(姜海杨), Chen J-R(陈娇荣). Growth and development features and physiology and biochemistry base of winter rapeseed in suitable population in northwest drought and cold regions. Acta Agric Boreali-occident Sin (西北农业学报), 2011, 20(8): 82–88 (in Chinese with English abstract)

[21]Wang F-H(王凤华), Li G-Y(李光远), Liu B-G(刘宝国), Guo X-B(郭旭彬). Influences of low temperature on APX of eggplant seedlings and cDNA clone of APX. J Anhui Agric Sci (安徽农业科学), 2008, 36(13): 5272–5677 (in Chinese with English abstract)

[22]Li H-H(李惠华), Lai Z-X(赖钟雄). A review of progress in ascorbate peroxidase in plants. Subtrop Plant Sci (亚热带植物科学), 2006, 35(2): 66–69 (in Chinese with English abstract)

[23]Chen G-Q(陈国强), Meng P(孟鹏), Liu L-L(刘李黎), Chen G(陈刚), Wang P(王萍). In silico cloning and characterization of sorghum APX gene. China J Bioinform (生物信息学), 2011, 9(2): 125–130 (in Chinese with English abstract)

[24]Baek K H, Skinner D Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near is oganic wheat lines. Plant Sci, 2003, 165: 1221–1227

[25]Kuk Y I, Shin J S, Burgos N R, Hwang T E, Han O, Cho B H, Jung S Y, Guh J O. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci, 2003, 43: 2109–2117

[26]Yu M(喻敏), Chen Y-J(陈跃进), Xiao H-D(萧洪东), Wang H-Z(王惠珍), Wang F(王芳), Sun X-H(孙秀华). Influences of boron and molybdenum on active oxygen species in turfgrass Seashore Paspalum under Low temperature. Acta Agron Sin (作物学报), 2005, 31(6): 755–759 (in Chinese with English abstract)

[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[4] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[5] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[8] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[9] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[12] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[15] 高芸, 张玉雪, 马泉, 苏盛楠, 李春燕, 丁锦峰, 朱敏, 朱新开, 郭文善. 春季低温对小麦花粉育性及粒数形成的影响[J]. 作物学报, 2021, 47(1): 104-115.
Full text



No Suggested Reading articles found!