欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (06): 994-1001.doi: 10.3724/SP.J.1006.2014.009949

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

Ta6-SFT在烟草中的逆境诱导型表达及抗旱性

李淑洁1,李静雯1,张正英2,*   

  1. 1 甘肃省农业科学院生物技术研究所,甘肃兰州 730070; 2 甘肃省农业科学院科研管理处,甘肃兰州 730070
  • 收稿日期:2013-10-13 修回日期:2014-03-04 出版日期:2014-06-12 网络出版日期:2014-04-08
  • 通讯作者: 张正英, E-mail: Kegc8@sina.com
  • 基金资助:

    本研究由甘肃省科技支撑计划(1011NKCA073), 甘肃省农业科学院科技创新专项(2009GAAS17), 甘肃省国际科技合作计划(1104WCGA188)资助。

Expression of Ta6-SFT Gene in Tobacco Induced by Drought Stress

LI Shu-Jie1,LI Jing-Wen1,ZHANG Zheng-Ying2,*   

  1. 1 Institute of Biotechnology, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; 2 Scientific Research Management Office, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
  • Received:2013-10-13 Revised:2014-03-04 Published:2014-06-12 Published online:2014-04-08
  • Contact: 张正英, E-mail: Kegc8@sina.com

摘要:

分别构建CaMV35S启动子驱动的Ta6-SFT组成型植物表达载体和rd29A启动子驱动的逆境诱导型表达载体。利用农杆菌介导法分别导入烟草中,获得转基因株系,Southern杂交和Northern点杂交确定Ta6-SFT整合进转基因株系基因组中,并正常转录。以非转基因株系作对照,对2种转基因烟草株系进行干旱胁迫处理,采用半定量RT-PCR分析Ta6-SFT在转基因株系中的表达,同时测定胁迫0 d和18 d果聚糖含量及部分农艺性状。结果表明,含有rd29A启动子的逆境诱导型株系中Ta6-SFT相对表达量比在含CaMV35S启动子的组成型株系中高,而且积累更多的果聚糖;从株高、1/2株高处茎粗、叶面积数据来看,逆境诱导型转基因株系的生长势优于组成型株系,对干旱表现强的耐性。因此,在转基因植物中逆境诱导型表达Ta6-SFT基因将发挥更好的抗逆功能。

关键词: Ta6-SFT, 果聚糖干旱胁迫, 逆境诱导型表达, 组成型表达

Abstract:

To obtain better Ta6-SFT gene expression efficiency in transgenic plants, we constructed two Ta6-SFT gene expressionvectors driven by CaMV35S promoter and rd29Apromoter, transformed them into tobacco mediated by Agrobacterium tumefaciens, respectively. Transgenic plants were confirmed by PCR, Southern blot and Northern dot blot. The two types of transgenic line were treated with 18 day drought stress, non-transgenic tobacco as a control. Expression of Ta6-SFT was detected with semi-quantitative RT-PCR at the beginning of stress and 18 days of treatment. In addition, fructan concentration and some agronomic traits such as plant height, stem diameter at half of plant height, and leaf area were analyzed at the same time. The results showed that Ta6-SFT expression level was more active and fructan content was higher under drought stress in rd29Apromoter driven transgenic lines. Agronomic traits and physiological measurement indicated that the transgenic lines carrying Ta6-SFT driven byrd29Apromoter had stronger growth vigor under the drought stress than that by CaMV35S promoter. It follows that Ta6-SFT gene inducible expression driven byrd29Apromoter could make transgenic lines have better stress tolerance.

Key words: Ta6-SFT, Fructan, Drought stress, Inducible expression at adverse environment, Constitutive expression

[1]Hendry G A F, Wallace R K. The origin, distribution and evolutionary significance of fructans. In: Suzuki M, Chatterton N J, eds. Science and Technology of Fructanes. Boca Raton, FL: CRC Press, 1993. pp 119–139



[2]高翔, 佘茂云, 殷桂香, 于洋, 别晓敏, 杜丽璞, 徐惠君, 叶兴国. 小麦果聚糖合成酶基因6-SFT克隆和功能验证. 科技导报, 2009, 27(23): 70–75



Gao X, She M Y, Yu Y, Bie X M, Xu H J, Ye X G. Isolation and functional determination of fuctan biosynthesis enzyme encoding gene 6-SFT from common wheat (triticum aestivum L.). Sci & Technol Rev, 2009, 27(23): 70–75 (in Chinese with English abstract)



[3]李慧娟, 尹海英, 张学成, 杨爱芳. 转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性. 山东大学学报(理学版), 2007, 42(1): 89–93



Li H J, Yin H Y, Zhang X C, Yang A F. Enhancement of drught resistance in transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa. J Shandong Agric Univ (Nat Sci), 2007, 42(1): 89–93 (in Chinese with English abstract)



[4]Bie X M, Wang K, She M Y, Du L P, Zhang S X, Li J R, Gao X, Lin Z S, Ye X G. Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep, 2012, 31: 2229–2238



[5]张小芸. 转果聚糖合成关键酶基因多年生黑麦草获得及抗旱性的提高. 中国农业科学院硕士学位论文, 2010



Zhang X Y. Transformation of Lolium perenne L. with Fructan:Fructan 1-fructosyltransferase Gene from Agropyron Cristatum and Enhancement of Drought Tolerance in Transgenic Plants. MS Thesis of Chinese Academy of Agriculture Sciences, Beijing, China, 2010 (in Chinese with English abstract)



[6]王正鹏, 蔡文伟, 张树珍. 蔗糖:蔗糖果糖基转移酶(1-SST)基因的克隆与植物表达载体的构建. 浙江农业科学, 2008, (4): 418–421



Wang Z P, Cai W W, Zhang S Z. Cloning of levansucrase(I-SST) gene and construction of its plant expression vector. J Zhejiang Agric Sci, 2008, (4): 418–421 (in Chinese with English abstract)



[7]薛应龙. 植物生理学实验手册. 上海: 上海科学技术出版社, 1985. p 67



Xue Y L. Plant Physiology Protocols. Shanghai: Shanghai Science and Technology Press, 1985. p 67 (in Chinese)



[8]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1993, 10: 1391–1406



[9]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant cell Physiol, 2004, 45: 346–350



[10]Hsieh T H, lee J T, Charng Y Y, Chan M T. tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002, 130: 618–626



[11]Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor Ⅰ gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol, 2002, 129: 1086–1094



[12]Nakashima K, Tran L S, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J, 2007, 51: 617–630



[13]Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant cell Physiol, 2004, 45: 346–350



[14]Hong B, Tong Z, Ma N, Li J, Kasuga M, Yamaguchi-Shinozaki K, Gao J. Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Sci China (Life Sci), 2006, 49: 436–445



[15]Behnam B, Kikuchi A, Celebi-Toprak F, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N. Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Rep, 2007, 26: 1275–1282



[16]Bhatnagar-Mathur P, Devi M J, Reddy D S, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma K K. Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep, 2007, 26: 2071–2082



[17]Polizel A M, Medri M E, Nakashima K, Yamanaka N, Farias J R, de Oliveira M C, Marin S R, Abdelnoor R V, Marcelino-Guimaraes F C, Fuganti R. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res, 2011, 10: 3641–3656



[18]Saint Pierre C, Crossa J L, Bonnett D, Yamaguchi-Shinozaki K, Reynolds M P. Phenotyping transgenic wheat for drought resistance. J Exp Bot, 2012, 63: 1799–1808



[19]Datta K, Baisakh N, Ganguly M, Krishnan S, Yamaguchi-Shinozaki K, Datta S K. Over-expression of Arabidopsis and rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotech J, 2012, 10: 579–586



[20]王沙生, 高荣孚, 吴冠明. 植物生理学(第2版). 北京: 北京林业出版社, 1991. p 364



Wang S S, Gang R F, Wu G M. Plant Physiology, 2nd edn. Beijing: Beijing Forestry Publishers, 1991. p 364 (in Chinese)



[21]司怀军, 张宁, 王蒂. 转甜菜碱醛脱氢酶基因提高烟草抗旱及耐盐性. 作物学报, 2007, 33: 1335−1339



Si H J, Zhang N, Wang D. Enhancement of drought and salt resistances in tobacco by transformation of betaine aldehyde dehydrogenase gene. Acta Agron Sin, 2007, 33: 1335−1339

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!