欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1340-1349.doi: 10.3724/SP.J.1006.2014.01340

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

一年生簇毛麦α-醇溶蛋白基因的分离、原核表达与功能鉴定

杨帆1,陈其皎1,2,高翔1,2,*,赵万春1,2,*,强琴琴1,吴丹1,孟敏1   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2陕西省小麦新品种培育工程研究中心, 陕西杨凌 712100
  • 收稿日期:2014-01-10 修回日期:2014-06-04 出版日期:2014-08-12 网络出版日期:2014-06-13
  • 通讯作者: 高翔, E-mail: gx@nwsuaf.edu.cn, Tel: 13709124775; 赵万春, E-mail: zhaowc2009@hotmail.com, Tel: 13110439969
  • 基金资助:

    本研究由“十二五”农村领域国家科技计划项目(2011AA100501), 国家现代农业产业技术体系建设专项(CARS-3-2-47), 国家自然科学基金项目(31171538, 30900896), 中央高校基本科研业务费专项资金项目(QN2009007)和西北农林科技大学唐仲英育种基金项目(A212020912)资助。

Cloning, Prokaryotic Expression and in vitro Functional Analysis of α-Gliadin Genes from Dasypyrum villosum

YANG Fan1,CHEN Qi-Jiao1,2,GAO Xiang1,2,*,ZHAO Wan-Chun1,2,*,JIANG Qin-Qin1,WU Dan1,MENG Min1   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 New Varieties Cultivation of Wheat Engineering Research Centre of Shaanxi Province, Yangling 712100, China
  • Received:2014-01-10 Revised:2014-06-04 Published:2014-08-12 Published online:2014-06-13
  • Contact: 高翔, E-mail: gx@nwsuaf.edu.cn, Tel: 13709124775; 赵万春, E-mail: zhaowc2009@hotmail.com, Tel: 13110439969

摘要:

醇溶蛋白是面筋的主要成分之一,对小麦品质具有重要影响。根据数据库中全长α-醇溶蛋白基因设计了一对通用引物,从5份一年生簇毛麦(Dasypyrum villosum)品系中共得到52条序列,长度在816~873 bp之间(GenBank登录号为KJ004676~KJ004727)。核酸序列分析表明,其中有8条假基因,有1(KJ004680)缺失终止密码子。推导氨基酸序列显示,KJ004677KJ004686KJ004714KJ004696含有1个额外的Cys,其中,前3条序列由于Tyr→Cys所致,而KJ004696则由于Ser→Cys突变。序列间的差异主要出现在N-端重复区和多聚谷氨酰胺I区,根据N端重复区多肽序列的差异将一年生簇毛麦α-醇溶蛋白分为5种类型。为了分析具有额外Cysα-醇溶蛋白所具有的品质效应,选取KJ004708 (具有典型的6Cys)KJ004714 (具有1个额外的Cys)分别构建表达载体,IPTG诱导后均得到分子量约30 kD的蛋白,与理论值相符;目的条带经切胶串联质谱鉴定证明,这2α-醇溶蛋白基因在大肠杆菌中正确表达。对表达的蛋白亚基进行纯化、复性和低温冷冻干燥,经4 g粉质仪分析表明,KJ004708KJ004714均能改善面团的加工品质,其中具有1个额外CysKJ004714亚基对面粉品质的改善更为显著。

关键词: 一年生簇毛麦, α-醇溶蛋白, 原核表达, 品质分析, 蛋白质串联质谱鉴定

Abstract:

Gliadin, which has a great effect on wheat quality, is one of main components in gluten. According to the full lengths of α-gliadin genes deposited in NCBI database, a conserved primer pair was designed to clone α-gliadin genes in five Dasypyrum villosum lines. A total 52 sequences (816 to 873 bp in length) were isolated (GenBank accession numbers: KJ004676 to KJ004727) including eight pseudogenes and another sequence KJ004680 without stop codon. Deduced amino acid sequence anaylsis showed that KJ004677, KJ004686, and KJ004714 contain an extra Cys from the Tyr → Cys mutation, whereas, the extra Cys in KJ004696 resulted from the Ser → Cys mutation. Amino acid variation mainly occurred in N-terminal repetitive region and polyglutamine domain I. Variation in N-terminal repetitive region formed five groups in the 43 α-gliadins. To study the effects of an extra Cys on dough quality, we constructed the prokaryotic expression vectors forKJ004708 (with the typical six Cys residues) and KJ004714 (with an extra Cys) and obtained proteins of ~30 kD from Escherichia coli BL21(DE3) under the induction of isopropyl-β-D-thiogalactoside (IPTG) with the predicted molecular weight. These expressed proteins were verified by matrix-assisted laser desorption-ionization time-of-flight MALDI-TOF/TOF tandem mass spectrometry analysis. The result showed that these α-gliadins were expressed correctly in E. coli. After purification, renaturation, and freeze-drying process, the functions of the expressed proteins were tested with 4 g Farinograph. Both KJ004708 and KJ004714 had positive effects on flour quality, especially KJ004714 with an extra Cys.

Key words: Dasypyrum villosum, Alfa-gliadin, Prokaryotic expression, Functional analysis, MALDI-TOF/TOF tandem mass spectrometer

[1]Qualset C O, Zhong G Y, De Pace C, Mc Guire P E. Population biology and evaluation of genetic resources of Dasypyrum villosum. In: Damania A B ed. Biodiversity and wheat improvement. Chichester: John Wiley & Sons, 1993. pp 227–233



[2]De Pace C, Qualset C O. Mating system and genetic differentiation in Dasypyrum villosum (Poaceae) in Italy. Plant Syst Evol, 1995, 197: 123–147



[3]Frederiksen S. Taxonomic studies in Dasypyrum (Poaceae). Nord J Bot, 1991, 11: 135–142



[4]Nielsen J. Host range of the smut species Ustilago nuda and Ustilago tritici in the tribe Triticeae. Can J Bot, 1978, 56: 901–915



[5]Chen X, Shi A N, Shang L M, Leath S, Murphy J P. The resistance of H. villosa to powdery mildew isolates and its expression in wheat background. Acta Phytopathol Sinica, 1997, 27: 17–22



[6]Minelli S, Ceccarelli M, Mariani M, De Pace C, Cionini P G. Cytogenetics of Triticum • Dasypyrum hybrids and derived lines. Cytogenet Genome Res, 2005, 109: 385–392



[7]Yildirim A, Jones S S, Murray T D. Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41: 1–6



[8]Jan C C, De Pace C, Mc Guire P E, Qualset C O. Hybrids and amphiploids of Triticum aestivum L. and T. turgidum L. with Dasypyrum villosum (L.) Candargy. Z P?anzenzücht, 1986, 96: 97–106



[9]Smith J G, Kidwell K K, Evans M A, Cook R J, Smiley R W. Evaluation of spring sereal grains and wild Triticum germplasm for resistance to Rhizoctonia solani AG-8. Crop Sci, 2003, 43: 701–709



[10]Zhong G Y, Dvorák J. Evidence for common genetic mechanisms controlling the tolerance of sudden salt stress in the tribe Triticeae. Plant Breed, 1995, 114: 297–302



[11]Montebove L, De Pace C, Jan C C, Scarascia-Mugnozza G T, Qualset C O. Chromosomal location of isozyme and seed storage protein genes in Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1987, 73: 836–845



[12]Shewry P R, Parmar S, Pappin D J C. Characterization and genetic control of the prolamins of Haynaldia villosa: relationship to cultivated species of the Triticeae (rye, wheat and barley). Biochem Genet, 1987, 25: 309–325



[13]Blanco A, Resta P, Simeone R, Parmar S, Shewry P R, Sabelli P, La?andra D. Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum (L.) Candargy. Theor Appl Genet, 1991, 82: 358–362



[14]Liu C J, Chao S, Gale M D. Wsp-1, a set of genes controlling water-soluble proteins in wheat and related species. Genet Res, 1989, 54: 173–181



[15]Li J M, Yang Z M, Tian H Q, Huang F, Gang P T. Somatic cell clone establishment and amphiploid synthesis in a Triticum aestivum • Haynaldia villosa intergeneric hybrid. Hereditas (Beijing), 1991, 13: 1–3



[16]Mohammad P, Hossain M A, Khodarker N A, Shiraishi M. Study for morphological characteristics of species alien to wheat in Bangladesh. Sarhad J Agric, 1997, 13: 541–550



[17]Okocha P I. Peculiarities of nucleo-cytoplasmic interactions in allocytoplasmic forms of wheat. Global J Pure Appl Sci, 1999, 5: 431–435



[18]De Pace C, Snidaro D, Ciaf? M, Vittori D, Ciofo A, Cenci A, Tanzarella O A, Qualset C O, Scarascia Mugnozza G T. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica, 2001, 117: 67–75



[19]谷淑波, 于振文, 王东, 张永丽. 小麦贮藏蛋白对加工品质的影响及对环境的反应. 山东农业大学学报(自然科学版), 2009, 40: 309–312



Gu S B, Yu Z W, Wang D, Zhang Y L. Effects of wheat storage protein on processing quality and reacting to environment. J Shandong Agric Univ (Nat Sci), 2009, 40: 309–312 (in Chinese)



[20]Payne P I, Holt L M, Jackson E A, Law C N, Damania A B. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond, 1984, 304: 359–379



[21]Shewry P R, Halford N G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot, 2002, 53: 947–958



[22] 朱西平, 李鑫, 李雅轩, 晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克隆、定位与进化分析. 作物学报, 2010, 36: 580–589



Zhu X P, Li X, Li Y X, Yan Y M. Cloning, chromosomal location, and evolutionary analysis of α-gliadin genes from Aegilops tauschii and common wheat (Triticum aestivum L.). Acta Agron Sin, 2010, 36: 580–589 (in Chinese with English abstract)



[23]Qi P F, Wei Y M, Yue Y W, Yan Z H, Zheng Y L. Biochemical and molecular characterization of gliadins. Mol Biol, 2006, 140: 713–723



[24]Murray H G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucl Acids Res, 1980, 8: 4321–4325



[25]van Herpen T W, Goryunova S V, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk M F, van Veelen P A, Koning F, van Soest L J, Vosman B, Bosch D, Hamer R J, Gilissen L J, Smulders M J. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7: 1



[26]李光蓉, 任正隆, 刘成, 周建平, 杨足君. 多年生簇毛麦α-醇溶蛋白基因的分离与序列分析. 作物学报, 2008, 34: 1097–1103



Li G R, Ren Z L, Liu C, Zhou J P, Yang Z J. Isolation and sequence analysis of α-gliadin genes from Dasypyrum breviaristatum. Acta Agron Sin, 2008, 34: 1097–1103 (in Chinese with English abstract)



[27]Molberg O, Uhlen A K, Jensen T, Flaete N S, Fleckenstein B, Arentz-Hansen H, Raki M, Lundin K E, Sollid L M. Mapping of gluten T cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology, 2005, 128: 393–401



[28]Li G R, Liu C, Zeng Z X, Jia J Q, Zhang T, Zhou J P, Ren Z L, Yang Z J. Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica, 2009, 165: 155–163



[29]Chen GX, Lv D W, Li W D, Subburaj S, Yu Z T, Wang Y J, Li X H, Wang K, Ye X G, Ma W, Yan Y M. The α-gliadin genes from Brachypodium distachyon L. provide evidence for a significant gap in the current genome assembly. Funct Integr Genomics, 2014, 14: 149–160



[30]Li G R, Zhang T, Ban Y R, Yang Z J. Molecular characterization and evolutionary analysis of α-gliadin genes from Eremopyrum bonaepartis (Triticeae). J Agric Sci, 2010, 2: 30–36



[31]张晓霞, 焦浈, 董振营, 李世明, 王燃, 凌宏清, 秦广雍, 王道文. 普通小麦品种小偃54中α/β-醇溶蛋白编码基因的克隆与序列分析. 作物学报, 2011, 37: 1497–1502



Zhang X X, Jiao Z, Dong Z Y, Li S M, Wang R, Ling H Q, Qin G Y, Wang D W. Cloning and sequence analysis of α/β-gliadin genes from common wheat variety Xiaoyan 54. Acta Agron Sin, 2011, 37: 1497–1502 (in Chinese with English abstract)



[32]李玉阁, 邢冉冉, 李锁平. 栽培一粒小麦α-醇溶蛋白新基因的克隆与序列分析. 麦类作物学报, 2012, 32: 387–392



Li Y G, Xing R R, Li S P. Cloning and sequence analysis of new α-gliadin genes from Triticum monococcum. J Triticeae Crops, 2012, 32: 387–392 (in Chinese with English abstract)



[33]Anderson O D, Litts J C, Greene F C. The α-gliadin gene family: I. Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet, 1997, 95: 50–58



[34]李敏, 高翔, 陈其皎, 董剑, 赵万春, 王明霞. 普通小麦中α-醇溶蛋白基因(GQ891685)的克隆、表达及品质效应鉴定. 中国农业科学, 2010, 43: 4765–4774



Li M, Gao X, Chen Q J, Dong J, Zhao W C, Wang M X. Cloning, prokaryotic expression and in vitro functional analysis of α-gliadin gene from common wheat. Sci Agric Sin, 2010, 43: 4765–4774 (in Chinese with English abstract)



[35]李光蓉, 郎涛, 刘成, 周建平, 任正隆, 杨足君. 小麦新品种‘成电麦1号’α-醇溶蛋白基因的分离与序列分析. 中国农学通报, 2011, 27(1): 203–208



Li G R, Lang T, Liu C, Zhou J P, Ren Z L, Yang Z J. Isolation and sequence analysis of α-gliadin genes from wheat cultivar Chengdianmai 1. Chin Agric Sci Bull, 2011, 27(1): 203–208 (in Chinese with English abstract)



[36]Anderson O D, Greene F C. The α-gliadin gene family: II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet, 1997, 95: 59–65



[37]刘千, 龙海, 魏育明, 颜泽洪, 郑有良. 小麦品种‘川农16’α-醇溶蛋白基因序列分析. 中国农业科学, 2008, 41: 2168–2173



Liu Q, Long H, Wei Y M, Yan Z H, Zheng Y L. Sequence analysis of α-gliadin genes from wheat variety Chuannong 16. Sci Agric Sin, 2008, 41: 2168–2173 (in Chinese with English abstract)



[38]Xie Z, Wang C, Wang K, Wang S, Li X, Zhang Z, Ma W, Yan Y. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 1239–1251



[39]田纪春. 谷物品质测试理论与方法. 北京: 科学出版社, 2006. pp 338–340



Tian J C. Theory and Method of Test in Grain Quality. Beijing: Science Press, 2006. pp 338–340 (in Chinese)



[40]姜薇莉, 孙辉, 凌家煜. 粉质质量指数(FQN)对于评价小麦粉品质的实用价值研究. 中国粮油学报, 2004, 19(2): 42–48



Jiang W L, Sun H, Ling J Y. Applicability of FQN in evaluation of wheat flour quality. J Chin Cereals Oils Assoc, 2004, 19(2): 42–48 (in Chinese with English abstract)

[1] 余国武, 青芸, 何珊, 黄玉碧. 玉米SSIIb蛋白多克隆抗体的制备及其应用[J]. 作物学报, 2022, 48(1): 259-264.
[2] 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选[J]. 作物学报, 2020, 46(9): 1312-1321.
[3] 苏亚春,王竹青,李竹,刘峰,许莉萍,阙友雄,戴明剑,陈允浩. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(04): 510-521.
[4] 喻时周,杨成龙,郭建春,段瑞军. 海马齿甜菜碱醛脱氢酶基因克隆、高效表达及酶学特性分析[J]. 作物学报, 2016, 42(10): 1569-1574.
[5] 强治全,梁雅珺,于正阳,杜娅,张帅,朱维宁,张林生. 小麦wzy2-1基因的克隆及功能分析[J]. 作物学报, 2016, 42(08): 1253-1258.
[6] 王晓红, 朱攀攀, 梁燕梅, 韩淑梅, 赵爱春, 王传宏, 鲁成, 余茂德. 桑树多聚半乳糖醛酸酶抑制蛋白基因MaPGIP1的克隆及功能分析[J]. 作物学报, 2015, 41(09): 1361-1371.
[7] 成伟,郑艳茹,葛丹凤,程光远,翟玉山,邓宇晴,彭磊,谭向尧,徐景升*. 甘蔗转录激活因子ScCBF1基因的克隆与表达分析[J]. 作物学报, 2015, 41(05): 717-724.
[8] 白云凤,聂江婷,张忠梁,李平,张维锋,闫建俊,冯瑞云,张耀. 籽粒苋AhNAD-ME的序列特征与表达[J]. 作物学报, 2014, 40(12): 2192-2197.
[9] 杨华,高翔,陈其皎,赵万春,董剑,李晓燕. 簇毛麦新型HMW-GS的序列分析及加工品质效应鉴定[J]. 作物学报, 2014, 40(04): 600-610.
[10] 谭秦亮,李长宁,杨丽涛,李杨瑞. 甘蔗ABA信号转导关键酶SoSnRK2.1基因的克隆与表达分析[J]. 作物学报, 2013, 39(12): 2162-2170.
[11] 谢登雷,崔江慧,常金华. 高粱中SbDREB2基因的克隆与表达分析[J]. 作物学报, 2013, 39(08): 1352-1359.
[12] 朱斌,陆俊杏,彭茜,翁昌梅,王淑文,余浩,李加纳,卢坤,梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析[J]. 作物学报, 2013, 39(05): 789-805.
[13] 周凯, 宋丽艳, 叶武威*, 王俊娟, 王德龙, 樊保香. 陆地棉耐盐相关基因GhSAMS的克隆及表达[J]. 作物学报, 2011, 37(06): 1012-1019.
[14] 王明霞, 高翔, 陈其皎, 董剑, 赵万春, 李艳亮, 李敏. 小麦品种陕253 γ-醇溶蛋白基因的克隆、原核表达与功能鉴定[J]. 作物学报, 2011, 37(01): 79-86.
[15] 朱西平,李鑫,李雅轩,晏月明. 普通小麦及近缘粗山羊草α-醇溶蛋白基因的克降、定位与进化分析[J]. 作物学报, 2010, 36(4): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!