欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (08): 1331-1339.doi: 10.3724/SP.J.1006.2014

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定

罗巧玲1,4,郑琪2,许云峰1,李立会3,韩方普2,许红星1,李滨2,马朋涛1,安调过1,*   

  1. 1 中国科学院遗传与发育生物学研究所农业资源研究中心, 河北石家庄 050022; 2中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室, 北京 100101; 3 中国农业科学院作物科学研究所, 100081北京; 4中国科学院大学, 北京 100049
  • 收稿日期:2014-02-24 修回日期:2014-04-16 出版日期:2014-08-12 网络出版日期:2014-06-03
  • 通讯作者: 安调过, E-mail: dgan@sjziam.ac.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171550), 国家科技支撑计划项目(2013BAD01B02)和中国科学院项目(CXJQ1201)资助。

Main Agronomic Traits of 390 Wheat-Rye Derivatives and GISH/FISH Identification of Their Outstanding Materials

LUO Qiao-Ling1,4,ZHENG Qi2,XU Yun-Feng1,LI Li-Hui3,HAN Fang-Pu2,XU Hong-Xing1,LI Bin2,MA Peng-Tao1,AN Diao-Guo1,*   

  1. 1 Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 4 University of Chinese Academy of Sciences, Beijing 100049, China?
  • Received:2014-02-24 Revised:2014-04-16 Published:2014-08-12 Published online:2014-06-03
  • Contact: 安调过, E-mail: dgan@sjziam.ac.cn

摘要:

将小麦近缘属植物黑麦中的优良基因导入小麦可以拓宽小麦的遗传基础,丰富小麦的遗传变异。本研究调查并分析了390份小麦-黑麦种质材料。在这390份种质材料中,6个主要农艺性状值均有较大的极差,说明其遗传多样性丰富。与10份小麦主栽品种相比,90%以上的材料具有穗长和分蘖数的显著优势,60%以上的材料具有小穗数优势,约30%的材料穗粒数和千粒重显著高于主栽品种。利用基因组原位杂交(genomic in situ hybridizationGISH)和多色荧光原位杂交(multicolor fluorescent in situ hybridizationmc-FISH)技术,对8份农艺性状优良的代表性材料进行染色体组成分析,发现3份为六倍体小黑麦(AABBRR)2份为八倍体小黑麦(AABBDDRR)1份为1RS·1BL易位系,其余2份不具有可见的黑麦染色体或染色体片段。值得指出的是,3份六倍体小黑麦与2份八倍体小黑麦所含的黑麦染色体不完全相同。八倍体小黑麦中有1对来源于黑麦的小染色体,而六倍体小黑麦中没有类似小染色体;并且,不同材料中黑麦4R染色体端部的GISH杂交带有明显差异。本研究结果为这些小麦-黑麦种质材料进一步应用于小麦育种提供了依据。

关键词: 小麦-黑麦种质, 农艺性状, GISH, FISH, 小黑麦, 遗传多样性

Abstract:

Transferring desirable genes of rye (Secale cereale L.) into common wheat (Triticum aestivum L.) can widen the genetic basis and enrich genetic variation of wheat. We analyzed 390 wheat-rye derivatives in this study. Large ranges of variation were found according to six main agronomic traits, indicating an abundant genetic diversity in these germplasms. Compared to ten major wheat cultivars, more than 90% of the wheat-rye derivatives were superior in spike length and tiller number, more than 60% were superior in spikelet number, and about 30% had higher kernel number per spike and thousand-grain weight. Eight representative materials with desirable agronomic traits were tested with genomic in situ hybridization(GISH) and multicolor fluorescent in situ hybridization (mc-FISH). The result showed thatamong eight outstanding materials three were hexaploid triticales (AABBRR) and two were octoploid triticales (AABBDDRR); another one was the 1RS·1BL translocation line; and the remaining two lines contained neither chromosome nor chromosome fragments of rye. Interestingly, the rye chromosomes were not completely the same between the hexaploid triticale and the octoploid triticale. A pair of rye chromosomes in the octoploidtriticale was smaller than usual, which was not contained in the hexaploid triticale. We also found that differenttriticale materials had different GISH banding patterns of chromosomes 4R. These results provide a basis for application of the wheat-rye derivatives in wheat breeding.

Key words: Wheat-rye derivatives, Agronomic trait, GISH, FISH, Triticale, Genetic diversity

[1]郝晨阳, 王兰芬, 张学勇, 游光霞, 董玉琛, 贾继增, 刘旭, 尚勋武, 刘三才, 曹永生. 我国育成小麦品种的遗传多样性演变. 中国科学C辑?生命科学, 2005, 35: 408–415



Hao C Y, Wang L F, Zhang X Y, You G X, Dong Y C, Jia J Z, Liu X, Shang X W, Liu S C, Cao Y S. Changes of genetic diversity of wheat varieties released in China. Sci China Ser C: Life Sci, 2005, 35: 408–415 (in Chinese)



[2]Harper J, Armstead I, Thomas A, James C, Gasior D, Bisaga M, Roberts L, King I, King J. Alien introgression in the grasses Lolium perenne (perennial ryegrass) and Festuca pratensis (meadow fescue): the development of seven monosomic substitution lines and their molecular and cytological characterization. Ann Bot-London, 2011, 107: 1313–1321



[3]安调过, 许红星, 许云峰. 小麦远缘杂交种质资源创新. 中国生态农业学报, 2011, 19: 1011–1019



An D G, Xu H X, Xu Y F. Enhancement of wheat distant hybridization germplasm. Chin. J Eco-Agric, 2011, 19: 1011–1019 (in Chinese with English abstract)



[4]Carver B F, Rayburn A L. Comparison of related wheat stocks possessing 1B or 1RS•1BL chromosomes agronomic performance. Crop Sci, 1994, 34: 1505–1510



[5]Wang C M, Zheng Q, Li L H, Niu Y C, Wang H B, Li B, Zhang X T, Xu Y F, An D G. Molecular cytogenetic characterization of a new T2BL center dot 1RS wheat-rye chromosome translocation line resistant to stripe rust and powdery mildew. Plant Dis, 2009, 93: 124–129



[6]Zhou J P, Zhang H Y, Yang Z J, Li G R, Hu L J, Lei M P, Liu C, Zhang Y, Ren Z L. Characterization of a new T2DS•2DL-?R translocation triticale ZH-1 with multiple resistances to diseases. Gen Resour Crop Evol, 2012, 59: 1161–1168



[7]An D G, Zheng Q, Zhou Y L, Ma P T, Lv Z L, Li L H, Li B, Luo Q L, Xu H X, Xu Y F. Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. Chromosome Res, 2013, 21: 419–432



[8]孙元枢. 中国小黑麦遗传育种研究与应用. 杭州:浙江科学技术出版社, 2002. pp 14–24



Sun Y S. Triticale Genetic Breeding and Utilization in China. Hangzhou: Zhejiang Science and Technology Press, 2002. pp 14–34 (in Chinese)



[9]Sebesta E E, Wood E A, Porter D R, Webster J A, Smith E L. Registration of amigo wheat germplasm resistant to greenbug. Crop Sci, 1995, 35: 293–293



[10]Lukaszewski A J. Frequency of 1RS.1AL and 1RS.1BL translocations in United-States wheats. Crop Sci, 1990, 30: 1151–1153



[11]Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998, 100: 323–340



[12]Schneider A, Molnar-Lang M. Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL?1RS or 1AL?1RS translocations using SSR and STS markers. Acta Agron Hung, 2009, 57: 409–416



[13]尚海英, 郑有良, 魏育明, 吴卫. 黑麦属基因资源研究进展. 麦类作物学报, 2003, 23(1): 86–89



Shang H Y, Zheng Y L, Wei Y M, Wu W. Advantage of study on the genetic resources of Secale. J Triticeae Crops, 2003, 23(1): 86–89 (in Chinese with English abstract)



[14]郑琪. 蓝粒小麦易位系的分子细胞遗传学分析及应用. 中国科学院研究生院博士学位论文, 2006. pp 27–28



Zheng Q. Molecular Cytogenetic Verification and Utilization of Blue-Grained Wheat Translocation Lines. PhD Dissertation of Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 2006. pp 27–28 (in Chinese with English abstract)



[15]Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat–rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep, 1989, 7: 150–158



[16]Cai X, Jones S S, Murray T D. Molecular cytogenetic characterization of Thinopyrum genomes conferring perennial growth habit in wheat–Thinopyrum amphiploids. Plant Breed, 2001, 120: 21–26



[17]Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36: 489–494



[18]Pedersen C, Langridge P. Identification of entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40: 589–593



[19]Nagy E D, Molnár-Láng M, Linc G, Láng L. Identification of wheat–barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome, 2002, 45: 1238–124



[20]李立会, 李秀全. 小麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006



Li L H, Li X Q. Standard of Description and Data in Wheat Germplasm Resources. Beijing: China Agriculture Press, 2006 (in Chinese)



[21]Han F P, Gao Z, Yu W C, Birchler J A. Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell, 2007, 19: 3853–3863



[22]Rayburn A L, Gill B S. Isolation of D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1987, 4: 102–109



[23]McIntyre C L, Pereira S, Moran L B. New Secale cereale (rye) DNA deribatives for detection of rye chromosome segments in wheat. Genome, 1990, 33: 635–640



[24]Cuadrado A, Schwarzacher T, The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosome, 1998, 107: 587–594



[25]田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006, 32: 1699–1705



Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivar with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006, 32: 1699–1705 (in Chinese with English abstract)



[26]何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011, 37: 202–215



He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011, 37: 202–215 (in Chinese with English abstract)



[27]符书兰. 普通小麦(Triticum aestivum L.)与黑麦(Secale cereale L.)异源多倍体及异染色体系的分子细胞学研究. 四川农业大学博士学位论文, 雅安, 2009. pp 31–34



Fu S L. Molecular and Cytobiology Study on Allopolyploid and Alien Chromosome Lines of Triticum aestivum L. and Secale cereale L. PhD Dissertation of Sichuan Agricultural University, Ya’an, China, 2009. pp 31–34 (in Chinese with English abstract)



[28]Bento M, Gustafson J P, Viegas W, Silva M. Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome, 2011, 54: 175–183



[29]任正隆, Lelley T, Röbbelen G. 小麦和黑麦染色体在小黑麦与小麦杂种的不同世代群体中的传递. 遗传学报, 1991, 18: 161–167



Ren Z L, Lelley T, Röbbelen G. Transmission of the wheat and rye chromosomes in octoploid triticale × common wheat populations. Acta Genet Sin, 1991, 18: 161–167 (in Chinese with English abstract)



[30]符书兰, 唐宗祥, 任正隆, 小麦-黑麦附加系的创制及5R抗白粉病新基因的发现. 遗传, 2011, 33: 1258–1262



Fu S L, Tang Z X, Ren Z L. Establishment of wheat-rye addition lines and De Novo powdery mildew resistance gene from chromosome 5R. Hereditas (Beijing), 2011, 33: 1258–1262 (in Chinese with English abstract)



[31]李方安, 唐宗祥, 符书兰. 新型小麦-黑麦6R附加系的创制及其白粉病抗性基因向小麦中的渗进. 麦类作物学报, 2013, 34: 33–37



Li F A, Tang Z X Fu S L. Development and identification of the novel wheat-rye 6R addition line with resistant gene to powdery mildew. J Triticeae Crops, 2013, 34: 33–37 (in Chinese with English abstract)



[32]姚景侠, 钟少斌, 张德玉. 六倍体小黑麦抗白粉病基因导入普通小麦的研究. 见: 庄巧生, 杜振华主编. 中国小麦育种研究进展(1991–1995). 北京: 中国农业出版社, 1996. pp 331–338



Yao J X, Zhong S B, Zhang D Y. Research of transferring resistant genes to powdery mildew from hexaploid triticales to Triticum aestivum. In: Zhuang Q S, Du Z H, eds. Advance of Wheat Breeding in China (1991–1995). Beijing: China Agriculture Press, 1996. pp 331–338 (in Chinese)



[33]Saulescu N N, Ittu G, Ciuca M, Ittu M, Serban G, Mustatea P. Transferring useful rye genes to wheat, using triticale as a bridge. Czech J Genet Plant, 2011, 47: S56–S62



[34]Kim W, Johnson J W, Baenziger P S, Lukaszewski A J, Gaines C S. Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci, 2004, 44: 1254–1258



[35]Graybosch R A. Uneasy unions: quality effects of rye chromatin transfers to wheat. J Cereal Sci, 2001, 33: 3–16



[36]Kumlay A M, Baenziger P S, Gill K S, Shelton D R, Graybosch R A, Lukaszewski A J, Wesenberg D M. Understanding the effect of rye chromatin in bread wheat. Crop Sci, 2003, 43: 1643–1651



[37]周建平, 张怀渝, 张怀琼, 任正隆. 小麦新品种川农12号中外源染色质的分子细胞遗传学检测. 麦类作物学报, 2006, 26(4): 20–22



Zhou J P, Zhang H Y, Zhang H Q, Ren Z L. Molecular cytogenetics identification of alien chromatin in Chuannong 12. J Triticeae Crops, 2006, 26(4): 20–22 (in Chinese with English abstract)



[38]任天恒, 晏本菊, 张怀琼, 任正隆. 1RS•1BL易位染色体对小麦开花后叶片延绿特性的影响. 麦类作物学报, 2009, 29: 419–423



Ren T H, Yan B J, Zhang H Q, Ren Z L. Effect of 1RS•1BL translocation chromosome on stay green trait in common wheat (Triticum aestivum L.). J Triticeae Crops, 2009, 29: 419–423 (in Chinese with English abstract)



[39]樊小莉, 王静, 张玮, 纪军, 张相岐, 李俊明. 小麦高产抗病新种质9204R的分子细胞学鉴定. 麦类作物学报, 2011, 31: 611–616



Fan X L, Wang J, Zhang W, Ji J, Zhang X Q, Li J M. Identification of wheat-rye translocation line 9204R with desirable agronomic traits and stripe rust resistance. J Triticeae Crops, 2011, 31: 611–616 (in Chinese with English abstract)



[40]任正隆. 遗传转移的MADI过程. 四川农业大学学报, 1990, 8(1): 1–6



Ren Z L. The MADI process for genetic transfer. J Sichuan Agric Univ, 1990, 8(1): 1–6 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[3] 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833.
[4] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[5] 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390.
[6] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[7] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[8] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[9] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[10] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[11] 刘易科,朱展望,陈泠,邹娟,佟汉文,朱光,何伟杰,张宇庆,高春保. 基于SNP标记揭示我国小麦品种(系)的遗传多样性[J]. 作物学报, 2020, 46(02): 307-314.
[12] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[13] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
[14] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[15] 卢媛,艾为大,韩晴,王义发,李宏杨,瞿玉玑,施标,沈雪芳. 糯玉米自交系SSR标记遗传多样性及群体遗传结构分析[J]. 作物学报, 2019, 45(2): 214-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!