作物学报 ›› 2017, Vol. 43 ›› Issue (06): 862-874.doi: 10.3724/SP.J.1006.2017.00862
张力岚1,2,王俊1,万雪贝1,2,徐益1,2,张列梅1,方平平1,祁建民1,*,张立武1,2,*
ZHANG Li-Lan1,2,WANG Jun1,WAN Xue-Bei1,2,XU Yi1,2,ZHANG Lie-Mei1,FANG Ping-Ping1,QI Jian-Min1,*,ZHANG Li-Wu1,2,*
摘要:
比较主要麻类作物和测序植物间的ITS序列,可明确它们间系统位置和进化关系。本研究采用PCR扩增和搜索GenBank数据库,获得32份麻类作物和11份测序作物的核糖体内转录间隔区(internal transcribed spacers, ITS)序列,利用MEGE软件分析ITS长度、G+C含量与同源性百分比差异。结果表明,黄麻属、红麻属、苎麻属和亚麻属的ITS基本序列全长分别为963、939、658和686 bp; G+C含量分别为57.87%、58.03%、59.05%和53.75%。黄麻属变异区域集中在220~386 bp间,红麻属变异区域集中在2个区段(206~347 bp,599~713 bp),苎麻属ITS变异区域分布在4个区段(158~163 bp、193~199 bp、288~333 bp和681~688 bp),亚麻属ITS变异区域分布在5个区段(219~229 bp、235~240 bp、427~432 bp、468~484 bp和588~594 bp)。系统位置分析表明,红麻属与棉花亲缘关系最近,黄麻与棉花亲缘关系较近;亚麻与苎麻各为一小支。系统位置分析与传统的植物分类结果较一致。研究主要麻类作物比较基因组学时,红麻、黄麻可参考棉花,苎麻可参考杨树或蓖麻。推测红麻属的进化时间约为33.7百万年前(million years ago,MYA),黄麻属约为65.3MYA,苎麻属约为67.5MYA,亚麻属约为90.5MYA。主要麻类作物进化时间越久,同属不同种之间ITS变异区段越多。
[1]熊和平. 麻类作物育种学. 北京: 中国农业科学技术出版社, 2008 Xiong H P. Fiber Crops Breeding. Beijing: China Agricultural Scientific and Technical Publishers, 2008 (in Chinese with English abstract) [2]粟建光. 我国麻类资源的多样性及其保护利用对策. 植物遗传资源科学, 2002, 3(3): 41–46 Su J G. Strategies for protection and sustainable utilization of genetic diversity of bast fiber crops in China. J Plant Genet Resour, 2002, 3(3): 41–46 (in Chinese with English abstract) [3]陶爱芬, 祁建民, 李木兰, 方平平, 林荔辉, 徐建堂. SRAP结合ISSR方法分析黄麻属的起源与演化. 中国农业科学, 2012, 45: 16–25 Tao A F, Qi J M, Li M L, Fang P P, Lin L H, Xu J T. SRAP combined with ISSR method to analyze the origin and evolution of Corchorus. Sci Agric Sin, 2012, 45: 16–25 (in Chinese with English abstract) [4]Zhang L W, Li A Q, Wang X F, Xu J T, Zhang G Q, Su J G, Qi J M, Guan C Y. Genetic diversity of kenaf (Hibiscus cannabinus) evaluated by inter-simple sequence repeat (ISSR). Biochem Genet, 51: 800–810 [5]张波, 郑长清, 赵立宁, 臧巩固. 中国苎麻近缘野生种的种类、分布与评价. 作物品种资源, 1998, (4): 1–2 Zhang B, Zheng C Q, Zhao L N, Zang G G. Species, distribution and evaluation of wild species of ramie in China. China Seed Industry, 1998, (4): 1–2 (in Chinese with English abstract) [6]史全良, 赵卫国. 桑树ITS序列测定及特点的初步分析. 蚕业科学, 2001, 27: 140–141 Shi Q L, Zhao W G. Preliminary study on ITS sequence in gand characteristics of mulberry. Sci Seric, 2001, 27: 140–142 (in Chinese with English abstract) [7]陈仁芳, 余茂德, 刘秀群, 陈龙清. 桑种质资源ITS序列与系统进化分析. 中国农业科学, 2010, 43: 1771–1781 Chen R D, Yu M D, Liu X Q, Chen L Q. Analysis on the internal transcribed spacers (ITS) sequences and phylogenetics of mulberry (Morus). Sci Agric Sin, 2010, 43: 1771–1781 (in Chinese with English abstract) [8]Wu C C, Wang S J, Zhang H B. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome. Genomics, 2006, 88: 394–406 [9]Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel Russell J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy Richard G et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution.. Nat Biotechnol, 2015, 33: 524–530 [10]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103 [11]Wullschleger S D, Weston D J, Difazio S P, Tuskan G A. Revisiting the sequencing of the first tree genome: Populus trichocarpa. Tree Physiol, 2012, 33: 357–364 [12]Couch J A, Zintel H A, Fritz P J. The genome of the tropical tree Theobroma cacao L. Mol General Genet, 1993, 237: 123–128 [13]Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M Z, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen H T. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genom, 2015, 16: 1–16 [14]Krishnakumar V, Kim M, Rosen B D, Karamycheva S, Bidwell S L, Tang H, Town C D. MTGD: The Medicago truncatula genome database. Plant Cell Physiol, 2015, 56: e1 [15]Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M, Kawashima K, Minami C, Muraki A, Nakazaki N, Takahashi C, Nakayama S, Kishida Y, Kohara M, Yamada M, Tsuruoka H, Sasamoto Si, Tabata S, Aizu T, Toyoda A, Shin-i T, Minakuchi Y, Kohara Y, Fujiyama A, Tsuchimoto S, Kajiyama S, Makigano E, Ohmido N, Shibagaki N, Cartagena J A, Wada N, Kohinata T. Sequence analysis of the genome of an oil-bearing tree (Jatropha curcas L.). DNA Res, 2010, 18: 65–76 [16]Chan A P, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, Melake-Berhan A, Jones K M, Redman J, Chen G, Cahoon E B, Gedil M, Stanke M, Haas B J, Wortman J R, Fraser-Liggett C M, Ravel J, Rabinowicz P D. Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol, 2010, 28: 951–966 [17]Cunff L L, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon A F, Boursiquot J M, This P. Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa. BMC Plant Biol, 2008, 8: 31 [18]Yu J, Hu S N, Wang J, Wong Gane Ka-Shu, Li S G, Liu B, Deng Y J, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 2002, 296: 79–92 [19]张立武, 袁民航, 何雄威, 刘星, 方平平, 林荔辉, 陶爱芬, 徐建堂, 祁建民. GenBank数据库中黄麻EST-SSR标记的开发及其通用性评价. 作物学报, 2014, 40: 1213–1219 Zhang L W, Yuan M H, He X W, Liu X, Fang P P, Lin L H, Tao A F, Xu J T, Qi J M. Development and universality evaluation of EST-SSR markers from GenBank in jute. Acta Agron Sin, 2014, 40: 1213–1219 (in Chinese with English abstract) [20]Thompson J D, Gibson T J, Higgins D G. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 2002, Chapter 2: 2.3.1–2.3.22 [21]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599 [22]Chen P, Ran S M, Li R, Huang Z P, Qian J H, Yu M L, Zhou R Y. Transcriptome de novo assembly and differentially expressed genes related to cytoplasmic male sterility in kenaf (Hibiscus cannabinus L.). Mol Breed, 2014, 34: 1879–1891 [23]Zhang L W, Wan X B, Xu J T, Lin L H, Qi J M. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192–202 [24]Liu T, Tang S W, Zhu S Y, Tang Q M, Zheng X. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol, 2014, 86: 85–92 [25]Chen J, Yu R, Liu L, Wang B, Peng D. Large-scale developing of simple sequence repeat markers and probing its correlation with ramie (Boehmeria nivea L.) fiber quality. Mol Genet Genom, 2016, 291: 1–9 [26]祁建民, 李维明, 吴为人. 黄麻的起源与进化研究. 作物学报, 1997, 23: 677–682 Qi J M, Li W M, Wu W R. Study on the origin and evolution of jute. Acta Agron Sin, 1997, 23: 677–682 (in Chinese with English abstract) [27]Zhang L W, Ming R, Zhang J, Tao A F, Fang P P, Qi J M. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genom, 2015, 16: 1062–1074 [28]吴建忠, 赵东升, 黄文功, 刘岩, 于莹, 姜卫东, 赵茜, 康庆华, 程莉莉, 袁红梅, 吴广文, 关凤芝. 12个亚麻品种亲缘关系的SRAP分析. 中国麻业科学, 2012, (4): 153–156 Wu J Z, Zhao D S, Huang W G, Liu Y, Yu Y, Jiang W D, Zhao Q, Kang Q H, Cheng L L, Yuan H M, Wu G W, Guan F Z. Genetic relationship analysis of 12 flax cultivars with SRAP marker. Plant Fiber Sci China, 2012, (4): 153–156 (in Chinese with English abstract) [29]Zhang L, Wan X, Xu J, Lin L, Qi J. De novo assembly of kenaf (Hibiscus cannabinus) transcriptome using Illumina sequencing for gene discovery and marker identification. Mol Breed, 2015, 35: 192–202 [30]Biswas C, Dey P, Karmakar P G, Satpathy S. Discovery of large-scale SNP markers and construction of linkage map in a RIL population of jute (Corchorus capsularis). Mol Breed, 2015, 35: 1–10 [31]Kundu A, Chakraborty A, Mandal N A, Das D, Karmakar P G, Singh N K, Sarkar D. A restriction-site-associated DNA (RAD) linkage map, comparative genomics and identification of QTL for histological fibre content coincident with those for retted bast fibre yield and its major components in jute (Corchorus olitorius L., Malvaceae s. l.). Mol Breed, 2015, 35: 1–17 [32]Kundu A, Topdar N, Sarkar D, Sinha M K, Ghosh A, Banerjee S, Das M, Balyan H S, Mahapatra B S, Gupta P K. Origins of white (Corchorus capsularis L.) and dark (C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol, 2013, 22: 372–381 [33]Chen J, Pei Z, Dai L, Wang B, Liu L, An X, Peng D. Transcriptome profiling using pyrosequencing shows genes associated with bast fiber development in ramie (Boehmeria nivea L.). BMC Genom, 2014, 15: 919 [34]Liu T, Zhu S, Tang Q, Ping C, Yu Y, Tang S. De novo assembly and characterization of transcriptome using illumina paired-end sequencing and identification of cesa gene in ramie (Boehmeria nivea L. gaud). BMC Genom, 2013, 14: 1–11 [35]Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L,Aerts A, Bhalerao R R, Bhalerao R P, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho P M, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596–604 [36]陈晓蓉, 潘其辉, 龚秋林, 王富强, 雷雪芳, 谭陈菊, 龚礼萍, 张萍, 刘齐元. 基于苎麻属野生近缘种形态变异类型的系统关系研究. 中国麻业科学, 2014, (5): 217–223 Chen X R, Pan Q H, Gong Q L, Wang F Q, Lei X F, Tan C J, Gong L P, Zhang P, Liu Q Y. Systematic relationship on morphological variation types of wild relative species of Boehmeria. Plant Fiber Sci China, 2014, (5): 217–223 (in Chinese with English abstract) [37]张波, 赵立宁, 臧巩固, 郑长清, 熊和平. 中国苎麻属植物野生种考察报告. 中国麻作, 1995, (4): 1–6 Zhang B, Zhao L N, Zang G G, Zheng C Q, Xiong H P. Investigation report on wild species of ramie in China. China’s Fiber Crops, 1995, (4): 1–6 (in Chinese with English abstract) [38]潘其辉, 高海军, 龚秋林, 陈勇玲, 陈晓蓉, 欧阳爱平, 刘上信, 刘灵燕. 中国苎麻属野生种资源多样性保护现状与对策. 中国麻业科学, 2012, (6): 153–156 Pan Q H, Gao H J, Gong Q L, Chen Y L, Chen X R, Ou-Yang A P, Liu S X, Liu L Y. Conservation status and Countermeasures of wild species resources of ramie in China. Plant Fiber Sci China, 2012, (6): 153–156 (in Chinese with English abstract) [39]Yu R, Baloch S U, Liu L, Pan Q, Gong S, Zhong X, Wang B, Peng D. The phylogenetic relationships among germplasm resources of wild ramie (Boehmeria nivea L. Gaud) in China based on trnL-F and its sequences. Pakistan J Bot, 2015, 47: 1451–1457 [40]Van B H, Stout J M, Cote A G, Tallon C M, Sharpe A G, Hughes T R, Page J E. The draft genome and transcriptome of Cannabis sativa. Genome Biol, 2011, 12: R102 [41]Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith D W, Grassa C J, Geraldes A, Cronk Q C, Cullis C, Dash P K, Kumar P A, Cloutier S, Sharpe A, Wong G, Wang J, Deyholos M K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J Cell Mol Biol, 2012, 72: 461–473 |
[1] | 徐益, 张力岚, 祁建民, 张列梅, 张立武. 主要麻类作物基因组学与遗传改良: 现状与展望[J]. 作物学报, 2021, 47(6): 997-1019. |
[2] | 陈锋,李向楠,曹莹莹,孙建喜,张福彦,董中东,崔党群. 小麦puroindoline b-2基因变异与产量相关性状的分析[J]. 作物学报, 2014, 40(01): 17-21. |
[3] | 刘新龙, 苏火生, 马丽, 陆鑫, 应雄美, 蔡青, 范源洪. 基于rDNA-ITS序列探讨甘蔗近缘属种的系统进化关系[J]. 作物学报, 2010, 36(11): 1853-1863. |
[4] | 马燕玲,程须珍,王丽侠,王素华,赵丹. Ceratotropis亚属基于SSR标记和ITS序列的分类与进化分析[J]. 作物学报, 2010, 36(09): 1585-1595. |
[5] | 钱锦,孙毅,段永红. 普通小麦rDNA的ITS区及其基因组起源[J]. 作物学报, 2009, 35(6): 1021-1030. |
[6] | 廖亮,李同建,刘中来,邓辉胜,徐玲玲,潘其辉,赖占均,石庆华. 基于细胞学和DNA序列的苎麻与其野生近缘类群系统关系研究[J]. 作物学报, 2009, 35(10): 1778-1790. |
[7] | 殷冬梅;崔党群. 不同花生基因型脂肪酸脱氢酶基因序列分析[J]. 作物学报, 2006, 32(10): 1466-1471. |
[8] | 陈辉;范源洪;向余颈攻;蔡青;张亚平. 从核糖体DNA ITS区序列研究甘蔗属及其近缘属种的系统发育关系[J]. 作物学报, 2003, 29(03): 379-385. |
|