[1] Khoury C K, Bjorkman A D, Dempewolf H, Ramirez-Villegas J, Guarino L, Jarvis A, Rieseberg L H, Struik P C. Increasing homogeneity in global food supplies and the implications for food security. Proc Natl Acad Sci USA, 2014, 111: 4001–4006.
[2] Liu J X, Wu M W, Liu C M. Cereal endosperms: Development and storage product accumulation. Annu Rev Plant Biol, 2022, 73: 255–291.
[3] Yan D W, Duermeyer L, Leoveanu C, Nambara E. The functions of the endosperm during seed germination. Plant Cell Physiol, 2014, 55: 1521–1533.
[4] Lu D D, Zhai J X, Xi M L. Regulation of DNA methylation during plant endosperm development. Front Genet, 2022, 13: 760690.
[5] De Giorgi J, Piskurewicz U, Loubery S, Utz-Pugin A, Bailly C, Mène-Saffrané L, Lopez-Molina L. An endosperm-associated cuticle is required for Arabidopsis seed viability, dormancy and early control of germination. PLoS Genet, 2015, 11: e1005708.
[6] Ding X L, Jia X H, Xiang Y, Jiang W H. Histone modification and chromatin remodeling during the seed life cycle. Front Plant Sci, 2022, 13: 865361.
[7] Kozaki A, Aoyanagi T. Molecular aspects of seed development controlled by gibberellins and abscisic acids. Int J Mol Sci, 2022, 23: 1876.
[8] Verma S, Attuluri V P S, Robert H S. Transcriptional control of Arabidopsis seed development. Planta, 2022, 255: 90.
[9] Hemenway E A, Gehring M. Epigenetic regulation during plant development and the capacity for epigenetic memory. Annu Rev Plant Biol, 2023, 74: 87–109.
[10] Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. Plant Cell, 2024, 36: 1358–1376.
[11] Doll N M, Ingram G C. Embryo-endosperm interactions. Annu Rev Plant Biol, 2022, 73: 293–321.
[12] Wu H, Becraft P W, Dannenhoffer J M. Maize endosperm development: tissues, cells, molecular regulation and grain quality improvement. Front Plant Sci, 2022, 13: 852082.
[13] Johri B M, Srivastava P S, Singh N. Reproductive biology. In: Johri B M, Srivastava P S, eds. Reproductive Biology of Plant. Springer-Verlag: Narosa Publishing House, 2001. pp 237–272.
[14] 邓志军, 宋松泉, 艾训儒, 姚兰. 植物种子保存和检测的原理与技术. 北京: 科学出版社, 2019.
Deng Z J, Song S Q, Ai X R, Yao L. Principles and Techniques for Plant Seed Preservation and Detection. Beijing: Science Press, 2019 (in Chinses).
[15] 刘军, 宋松泉, 等. 水稻种子生物学. 北京: 科学出版社, 2024.
Liu J, Song S Q, et al. Rice Seed Biology. Beijing: Science Press, 2024.
[16] Sabelli P A, Larkins B A. The development of endosperm in grasses. Plant Physiol, 2009, 149: 14–26.
[17] Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: II. Dynamic changes in the endosperm. J Integr Plant Biol, 2016, 58: 786–798.
[18] Jääskeläinen A S, Holopainen-Mantila U, Tamminen T, Vuorinen T. Endosperm and aleurone cell structure in barley and wheat as studied by optical and Raman microscopy. J Cereal Sci, 2013, 57: 543–550.
[19] Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly 4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J, 2012, 70: 940–953.
[20] He Y H, Yang Q, Yang J, Wang Y F, Sun X L, Wang S, Qi W W, Ma Z Y, Song R T. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize. Genetics, 2021, 218: iyab070.
[21] Liu J, Wu X, Yao X, Yu R, Larkin P J, Liu C M. Mutations in the DNA demethylase OsROS1 result in a thickened aleurone and improved nutritional value in rice grains. Proc Natl Acad Sci USA, 2018, 115: 11327–11332.
[22] Wu H, Gontarek B C, Yi G, Beall B D, Neelakandan A K, Adhikari B, Chen R M, McCarty D R, Severin A J, Becraft P W. The thick aleurone1 gene encodes a NOT1 subunit of the CCR4-NOT complex and regulates cell patterning in endosperm. Plant Physiol, 2020, 184: 960–972.
[23] Becraft P W, Yi G. Regulation of aleurone development in cereal grains. J Exp Bot, 2011, 62: 1669–1675.
[24] Ono A, Yamaguchi K, Fukada-Tanaka S, Terada R, Mitsui T, Iida S. A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J, 2012, 71: 564–574.
[25] Yi G, Neelakandan A K, Gontarek B C, Vollbrecht E, Becraft P W. The naked endosperm genes encode duplicate INDETERMINATE domain transcription factors required for maize endosperm cell patterning and differentiation. Plant Physiol, 2015, 167: 443–456.
[26] Gontarek B C, Neelakandan A K, Wu H, Becraft P W. NKD transcription factors are central regulators of maize endosperm development. Plant Cell, 2016, 28: 2916–2936.
[27] Qi X, Li S X, Zhu Y X, Zhao Q, Zhu D Y, Yu J J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. Plant Mol Biol, 2017, 93: 7–20.
[28] Kawakatsu T, Yamamoto M P, Touno S M, Yasuda H, Takaiwa F. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. Plant J, 2009, 59: 908–920.
[29] Wu Y F, Lee S K, Yoo Y, Wei J H, Kwon S Y, Lee S W, Jeon J S, An G. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes. Mol Plant, 2018, 11: 833–845.
[30] Huang X R, Peng X B, Sun M X. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. New Phytol, 2017, 215: 1039–1058.
[31] Li D Q, Wu X B, Wang H F, Feng X, Yan S J, Wu S Y, Liu J X, Yao X F, Bai A N, Zhao H, et al. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. Mol Plant, 2021, 14: 1343–1361.
[32] Zhang Q F. Purple tomatoes, black rice and food security. Nat Rev Genet, 2021, 22: 414.
[33] Wu X B, Liu J X, Li D Q, Liu C M. Rice caryopsis development: I. Dynamic changes in different cell layers. J Integr Plant Biol, 2016, 58: 772–785.
[34] Zheng Y K, Wang Z. The cereal starch endosperm development and its relationship with other endosperm tissues and embryo. Protoplasma, 2015, 252: 33–40.
[35] Kobayashi H, Ikeda T M, Nagata K. Spatial and temporal progress of programmed cell death in the developing starchy endosperm of rice. Planta, 2013, 237: 1393–1400.
[36] Doll N M, Nowack M K. Endosperm cell death: roles and regulation in angiosperms. J Exp Bot, 2024, 75: 4346–4359.
[37] Zhang K, Guo L, Cheng W, Liu B Y, Li W D, Wang F, Xu C Z, Zhao X Y, Ding Z H, Zhang K W, et al. SH1-dependent maize seed development and starch synthesis via modulating carbohydrate flow and osmotic potential balance. BMC Plant Biol, 2020, 20: 264.
[38] López-Fernández M P, Maldonado S. Programmed cell death during quinoa perisperm development. J Exp Bot, 2013, 64: 3313–3325.
[39] López-Fernández M P, Maldonado S. Ricinosomes provide an early indicator of suspensor and endosperm cells destined to die during late seed development in quinoa (Chenopodium quinoa). Ann Bot, 2013, 112: 1253–1262.
[40] Maduwanthi S D T, Marapana R A U J. Induced ripening agents and their effect on fruit quality of banana. Int J Food Sci, 2019, 2019: 2520179.
[41] Langer M, Hilo A, Guan J-C, Koch K E, Xiao H, Verboven P, Gündel A, Wagner S, Ortleb S, Radchuk V, et al. Causes and consequences of endogenous hypoxia on growth and metabolism of developing maize kernels. Plant Physiol, 2023, 192: 1268–1288.
[42] Saada S, Solomon C U, Drea S. Programmed cell death in developing Brachypodium distachyon grain. Int J Mol Sci, 2021, 22: 9086.
[43] Wei Y M, Wang B H, Shao D J, Yan R Y, Wu J W, Zheng G M, Zhao Y J, Zhang X S, Zhao X Y. Defective kernel 66 encodes a GTPase essential for kernel development in maize. J Exp Bot, 2023, 74: 5694–5708.
[44] Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P B, Yao J L, Zhou Z Q, Chen J X, Liu R J, et al. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality. Plant Cell, 2022, 34: 1912–1932.
[45] He W, Li W J, Luo X, Tang Y Q, Wang L, Yu F, Lin Q L. Rice FERONIA-LIKE RECEPTOR 3 and 14 affect grain quality by regulating redox homeostasis during endosperm development. J Exp Bot, 2023, 74: 3003–3018.
[46] Li R, Lan S Y, Xu Z X. Programmed cell death in wheat during starchy endosperm development. Physiol Mol Biol Plant, 2004, 30: 183–188.
[47] Li C, Li C, Wang B B, Zhang R Q, Fu K Y, Gale W J, Li C Y. Programmed cell death in wheat (Triticum aestivum L.) endosperm cells is affected by drought stress. Protoplasma, 2018, 255: 1039–1052.
[48] Liu G Y, Zhang R Q, Li S, Ullah R, Yang F P, Wang Z H, Guo W L, You M S, Li B Y, Xie C J, et al. TaMADS29 interacts with TaNF-YB1 to synergistically regulate early grain development in bread wheat. Sci China Life Sci, 2023, 66: 1647–1664.
[49] Wang G, Qi W W, Wu Q, Yao D S, Zhang J S, Zhu J, Wang G, Wang G F, Tang Y P, Song R T. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiol, 2014, 165: 582–594.
[50] Nowicka A, Kovacik M, Tokarz B, Vrána J, Zhang Y Q, Weigt D, Doležel J, Pecinka A. Dynamics of endoreduplication in developing barley seeds. J Exp Bot, 2021, 72: 268–282.
[51] Sabelli P A, Liu Y, Dante R A, Lizarraga L E, Nguyen H N, Brown S W, Klingler J P, Yu J J, LaBrant E, Layton T M, et al. Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc Natl Acad Sci USA, 2013, 110: E1827–E1836.
[52] Pedroza-Garcia J A, Eekhout T, Achon I, Nisa M U, Coussens G, Vercauteren I, Van den Daele H, Pauwels L, Van Lijsebettens M, Raynaud C, et al. Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death. Plant Cell, 2021, 33: 2662–2684.
[53] Müntz K. Deposition of storage proteins. Plant Mol Biol, 1998, 38: 77–99.
[54] Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol J, 2010, 8: 939–953.
[55] Washida H, Sugino A, Doroshenk K A, Satoh-Cruz M, Nagamine A, Katsube-Tanaka T, Ogawa M, Kumamaru T, Satoh H, Okita T W. RNA targeting to a specific ER sub-domain is required for efficient transport and packaging of α-globulins to the protein storage vacuole in developing rice endosperm. Plant J, 2012, 70: 471–479.
[56] Washida H, Sugino A, Messing J, Esen A, Okita T W. Asymmetric localization of seed storage protein RNAs to distinct subdomains of the endoplasmic reticulum in developing maize endosperm cells. Plant Cell Physiol, 2004, 45: 1830–1837.
[57] Washida H, Kaneko S, Crofts N, Sugino A, Wang C L, Okita T W. Identification of cis-localization elements that target glutelin RNAs to a specific subdomain of the cortical endoplasmic reticulum in rice endosperm cells. Plant Cell Physiol, 2009, 50: 1710–1714.
[58] Yang Y, Crofts A J, Crofts N, Okita T W. Multiple RNA binding protein complexes interact with the rice prolamine RNA cis-localization zipcode sequences. Plant Physiol, 2014, 164: 1271–1282.
[59] Tian L, Chou H L, Zhang L N, Hwang S K, Starkenburg S R, Doroshenk K A, Kumamaru T, Okita T W. RNA-binding protein RBP-P is required for glutelin and prolamine mRNA localization in rice endosperm cells. Plant Cell, 2018, 30: 2529–2552.
[60] Tian L, Chou H L, Zhang L N, Okita T W. Targeted endoplasmic reticulum localization of storage protein mRNAs requires the RNA-binding protein RBP-L. Plant Physiol, 2019, 179: 1111–1131.
[61] Chou H L, Tian L, Kumamaru T, Hamada S, Okita T W. Multifunctional RNA binding protein OsTudor-SN in storage protein mRNA transport and localization. Plant Physiol, 2017, 175: 1608–1623.
[62] Kawakatsu T, Takaiwa F. Rice proteins and essential amino acids. In: Bao J, ed. Rice: Chemistry and Technology. Duxford, UK: Woodhead Publ, 2019. pp 109–130.
[63] Xi D M, Zheng C C. Transcriptional regulation of seed storage protein genes in Arabidopsis and cereals. Seed Sci Res, 2011, 21: 247–254.
[64] Zhang Z Y, Yang J, Wu Y. Transcriptional regulation of zein gene expression in maize through the additive and synergistic action of opaque 2, prolamine-box binding factor, and O2 heterodimerizing proteins. Plant Cell, 2015, 27: 1162–1172.
[65] Li C B, Yue Y H, Chen H J, Qi W W, Song R T. The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during maize endosperm development. Plant Cell, 2018, 30: 2402–2424.
[66] Boudet J, Merlino M, Plessis A, Gaudin J C, Dardevet M, Perrochon S, Alvarez D, Risacher T, Martre P, Ravel C. The bZIP transcription factor SPA heterodimerizing protein represses glutenin synthesis in Triticum aestivum. Plant J, 2019, 97: 858–871.
[67] Zhang Z Y, Zheng X X, Yang J, Messing J, Wu Y. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci USA, 2016, 113: 10842–10847.
[68] Zhang Z Y, Dong J Q, Ji C, Wu Y R, Messing J. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci USA, 2019, 116: 11223–11228.
[69] Wang J, Chen Z C, Zhang Q, Meng S S, Wei C X. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol, 2020, 184: 1775–1791.
[70] Gao Y J, An K X, Guo W W, Chen Y M, Zhang R J, Zhang X, Chang S Y, Rossi V, Jin F M, Cao X Y, et al. The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell, 2021, 33: 603–622.
[71] Feng F, Qi W W, Lv Y D, Yan S M, Xu L M, Yang W Y, Yuan Y, Chen Y H, Zhao H, Song R T. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell, 2018, 30: 375–396.
[72] Yang T, Guo L X, Ji C, Wang H H, Wang J C, Zheng X X, Xiao Q, Wu Y R. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. Plant Cell, 2021, 33: 104–128.
[73] Shimada T, Takagi J, Ichino T, Shirakawa M, Hara-Nishimura I. Plant vacuoles. Annu Rev Plant Biol, 2018, 69: 123–145.
[74] Shewry P R, Napier J A, Tatham A S. Seed storage proteins: structures and biosynthesis. Plant Cell, 1995, 7: 945–956.
[75] Crofts A J, Washida H, Okita T W, Satoh M, Ogawa M, Kumamaru T, Satoh H. The role of mRNA and protein sorting in seed storage protein synthesis, transport, and deposition. Biochem Cell Biol, 2005, 83: 728–737.
[76] Wang Y H, Ren Y L, Liu X, Jiang L, Chen L M, Han X H, Jin M N, Liu S J, Liu F, Lv J, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J, 2010, 64: 812–824.
[77] Liu F, Ren Y L, Wang Y H, Peng C, Zhou K N, Lv J, Guo X P, Zhang X, Zhong M S, Zhao S L, et al. OsVPS9A functions cooperatively with OsRAB5A to regulate post-Golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells. Mol Plant, 2013, 6: 1918–1932.
[78] Ren Y L, Wang Y H, Liu F, Zhou K N, Ding Y, Zhou F, Wang Y, Liu K, Gan L, Ma W W, et al. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm. Plant Cell, 2014, 26: 410–425.
[79] Wang Y H, Liu F, Ren Y L, Wang Y L, Liu X, Long W H, Wang D, Zhu J P, Zhu X P, Jing R N, et al. GOLGI TRANSPORT 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells. Plant Cell, 2016, 28: 2850–2865.
[80] Ren Y L, Wang Y H, Pan T, Wang Y L, Wang Y F, Gan L, Wei Z Y, Wang F, Wu M M, Jing R N, et al. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. Plant Cell, 2020, 32: 758–777.
[81] Kumamaru T, Uemura Y, Inoue Y, Takemoto Y, Siddiqui S U, Ogawa M, Hara-Nishimura I, Satoh H. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant Cell Physiol, 2010, 51: 38–46.
[82] Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 128: 1212–1222.
[83] Holding D R, Otegui M S, Li B L, Meeley R B, Dam T, Hunter B G, Jung R, Larkins B A. The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell, 2007, 19: 2569–2582.
[84] Wang G F, Wang F, Wang G, Wang F, Zhang X W, Zhong M Y, Zhang J, Lin D B, Tang Y P, Xu Z K, et al. Opaque1 encodes a myosin XI motor protein that is required for endoplasmic reticulum motility and protein body formation in maize endosperm. Plant Cell, 2012, 24: 3447–3462.
[85] Yao D S, Qi W W, Li X, Yang Q, Yan S M, Ling H L, Wang G, Wang G F, Song R T. Maize opaque10 encodes a cereal-specific protein that is essential for the proper distribution of zeins in endosperm protein bodies. PLoS Genet, 2016, 12: e1006270.
[86] Xi X Y, Ye B X. Studies on endosperm development and deposition of storage reserves in Coix lacryma-jobi. J Integr Plant Biol, 1995, 37: 118–124.
[87] Shen S, Ma S, Chen X M, Yi F, Li B B, Liang X G, Liao S J, Gao L H, Zhou S L, Ruan Y L. A transcriptional landscape underlying sugar import for grain set in maize. Plant J, 2022, 110: 228–242.
[88] Kobayashi H. Variations of endoreduplication and its potential contribution to endosperm development in rice (Oryza sativa L.). Plant Prod Sci, 2019, 22: 227–241.
[89] Dante R A, Sabelli P A, Nguyen H N, Leiva-Neto J T, Tao Y M, Lowe K S, Hoerster G J, Gordon-Kamm W J, Jung R, Larkins B A. Cyclin-dependent kinase complexes in developing maize endosperm: evidence for differential expression and functional specialization. Planta, 2014, 239: 493–509.
[90] Dante R A, Larkins B A, Sabelli P A. Cell cycle control and seed development. Front Plant Sci, 2014, 5: 493.
[91] Leiva-Neto J T, Grafi G, Sabelli P A, Dante R A, Woo Y-M, Maddock S, Gordon-Kamm W J, Larkins B A. A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell, 2004, 16: 1854–1869.
[92] Ajadi A A, Tong X H, Wang H M, Zhao J, Tang L Q, Li Z Y, Liu X X, Shu Y Z, Li S F, Wang S, et al. Cyclin-dependent kinase inhibitors KRP1 and KRP2 are involved in grain filling and seed germination in rice (Oryza sativa L.). Int J Mol Sci, 2019, 21: 245.
[93] Mizutani M, Naganuma T, Tsutsumi K I, Saitoh Y. The syncytium-specific expression of the Orysa; KRP3 CDK inhibitor: implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. J Exp Bot, 2010, 61: 791–798.
[94] Su’udi M, Cha J Y, Jung M H, Ermawati N, Han C D, Kim M G, Woo Y M, Son D. Potential role of the rice OsCCS52A gene in endoreduplication. Planta, 2012, 235: 387–397.
[95] Su’udi M, Cha J Y, Ahn I P, Kwak Y S, Woo Y M, Son D. Functional characterization of a B-type cell cycle switch 52 in rice (OsCCS52B). Plant Cell Tissue Organ Cult, 2012, 111: 101–111.
[96] Hara T, Katoh H, Ogawa D, Kagaya Y, Sato Y, Kitano H, Nagato Y, Ishikawa R, Ono A, Kinoshita T, et al. Rice SNF2 family helicase ENL1 is essential for syncytial endosperm development. Plant J, 2015, 81: 1–12.
[97] Zhou Y F, Zhang Y C, Sun Y M, Yu Y, Lei M Q, Yang Y W, Lian J P, Feng Y Z, Zhang Z, Yang L, et al. The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nat Commun, 2021, 12: 6525.
[98] He Y H, Wang J G, Qi W W, Song R T. Maize Dek15 encodes the cohesin-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development. Plant Cell, 2019, 31: 465–485.
[99] Huang Y C, Wang H H, Huang X, Wang Q, Wang J C, An D, Li J Q, Wang W Q, Wu Y R. Maize VKS1 regulates mitosis and cytokinesis during early endosperm development. Plant Cell, 2019, 31: 1238–1256.
[100] 宋松泉, 刘军, 唐翠芳, 张文虎, 徐恒恒, 张琪, 高家东. 生长素代谢与信号转导及其调控种子休眠与萌发的分子机制. 科学通报, 2020, 65: 3924–3943.
Song S Q, Liu J, Tang C F, Zhang W H, Xu H H, Zhang Q, Gao J D. Metabolism and signaling of auxins and their roles in regulating seed dormancy and germination. Chin Sci Bull, 2020, 65: 3924–3943 (in Chinese with English abstract).
[101] Basunia M A, Nonhebel H M. Hormonal regulation of cereal endosperm development with a focus on rice (Oryza sativa). Funct Plant Biol, 2019, 46: 493–506.
[102] Zhang X F, Tong J H, Bai A N, Liu C M, Xiao L T, Xue H W. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. J Integr Plant Biol, 2020, 62: 1625–1637.
[103] Xu X Y, Zhiguo E, Zhang D P, Yun Q B, Zhou Y, Niu B X, Chen C. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiol, 2021, 185: 934–950.
[104] Bernardi J, Lanubile A, Li Q B, Kumar D, Kladnik A, Cook S D, Ross J J, Marocco A, Chourey P S. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol, 2012, 160: 1318–1328.
[105] LeCLere S, Schmelz E A, Chourey P S. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol, 2010, 153: 306–318.
[106] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707–711.
[107] Wang Y F, Liu W W, Wang H Q, Du Q G, Fu Z Y, Li W X, Tang J H. ZmEHD1 is required for kernel development and vegetative growth through regulating auxin homeostasis. Plant Physiol, 2020, 182: 1467–1480.
[108] Forestan C, Meda S, Varotto S. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152: 1373–1390.
[109] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci, 2015, 112: 11102–11107.
[110] Jameson P E, Song J C. Cytokinin: a key driver of seed yield. J Exp Bot, 2016, 67: 593–606.
[111] Panda B B, Sekhar S, Dash S K, Behera L, Shaw B P. Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice. BMC Plant Biol, 2018, 18: 89.
[112] Geisler-Lee J, Gallie D R. Aleurone cell identity is suppressed following connation in maize kernels. Plant Physiol, 2005, 139: 204–212.
[113] Sreenivasulu N, Radchuk V, Alawady A, Borisjuk L, Weier D A, Staroske N, Fuchs J, Miersch O, Strickert M, Usadel B, et al. De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant J, 2010, 64: 589–603.
[114] Qin P, Zhang G H, Hu B H, Wu J, Chen W L, Ren Z J, Liu Y L, Xie J, Yuan H, Tu B, et al. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Sci Adv, 2021, 7: eabc8873.
[115] Deng X, Song X W, Wei L Y, Liu C Y, Cao X F. Epigenetic regulation and epigenomic landscape in rice. Natl Sci Rev, 2016, 3: 309–327.
[116] Zhang H M, Lang Z B, Zhu J K. Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol, 2018, 19: 489–506.
[117] Kawakatsu T, Nery J R, Castanon R, Ecker J R. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol, 2017, 18: 171.
[118] Rajkumar M S, Gupta K, Khemka N K, Garg R, Jain M. DNA methylation reprogramming during seed development and its functional relevance in seed size/weight determination in chickpea. Commun Biol, 2020, 3: 340.
[119] Ashapkin V V, Kutueva L I, Vanyushin B F. Plant DNA methyltransferase genes: multiplicity, expression, methylation patterns. Biochemistry (Mosc), 2016, 81: 141–151.
[120] Matzke M A, Mosher R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet, 2014, 15: 394–408.
[121] Zhai J X, Bischof S, Wang H F, Feng S H, Lee T F, Teng C, Chen X Y, Park S Y, Liu L S, Gallego-Bartolome J, et al. A one precursor one siRNA model for Pol IV-dependent siRNA biogenesis. Cell, 2015, 163: 445–455.
[122] Law J A, Jacobsen S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet, 2010, 11: 204–220.
[123] Kuo H Y, Jacobsen E L, Long Y P, Chen X Y, Zhai J X. Characteristics and processing of Pol IV-dependent transcripts in Arabidopsis. J Genet Genomics, 2017, 44: 3–6.
[124] Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction. Nat Rev Genet, 2014, 15: 613–624.
[125] Park K, Lee S, Yoo H, Choi Y. DEMETER-mediated DNA demethylation in gamete companion cells and the endosperm, and its possible role in embryo development in Arabidopsis. J Plant Biol, 2020, 63: 321–329.
[126] Hsieh T F, Ibarra C A, Silva P, Zemach A, Eshed-Williams L, Fischer R L, Zilberman D. Genome-wide demethylation of Arabidopsis endosperm. Science, 2009, 324: 1451–1454.
[127] Park K, Kim M Y, Vickers M, Park J S, Hyun Y, Okamoto T, Zilberman D, Fischer R L, Feng X Q, Choi Y, et al. DNA demethylation is initiated in the central cells of Arabidopsis and rice. Proc Natl Acad Sci USA, 2016, 113: 15138–15143.
[128] Zemach A, Yvonne Kim M, Silva P, Rodrigues J A, Dotson B, Brooks M D, Zilberman D. Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci USA, 2010, 107: 18729–18734.
[129] Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G. Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell, 2004, 16: 510–522.
[130] Ibarra C A, Feng X Q, Schoft V K, Hsieh T F, Uzawa R, Rodrigues J A, Zemach A, Chumak N, Machlicova A, Nishimura T, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science, 2012, 337: 1360–1364.
[131] McCue A D, Nuthikattu S, Reeder S H, Keith Slotkin R. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PLoS Genet, 2012, 8: e1002474.
[132] Jullien P E, Susaki D, Yelagandula R, Higashiyama T, Berger F. DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr Biol, 2012, 22: 1825–1830.
[133] Zhang M, Xie S J, Dong X M, Zhao X, Zeng B, Chen J, Li H, Yang W L, Zhao H N, Wang G K, et al. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res, 2014, 24: 167–176.
[134] Moreno-Romero J, Jiang H, Santos-González J, Köhler C. Parental epigenetic asymmetry of PRC2-mediated histone modifications in the Arabidopsis endosperm. EMBO J, 2016, 35: 1298–1311.
[135] Lu X D, Wang W X, Ren W, Chai Z G, Guo W Z, Chen R M, Wang L, Zhao J, Lang Z H, Fan Y L, et al. Genome-wide epigenetic regulation of gene transcription in maize seeds. PLoS One, 2015, 10: e0139582.
[136] Xu W, Yang T Q, Dong X, Li D Z, Liu A Z. Genomic DNA methylation analyses reveal the distinct profiles in Castor bean seeds with persistent endosperms. Plant Physiol, 2016, 171: 1242–1258.
[137] Hu Y, Li Y, Weng J, Liu H, Yu G, Liu Y, Xiao Q, Huang H, Wang Y, Wei B, et al. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation. Plant J, 2021, 105: 108–123.
[138] Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang Q Q, Pearson J K, Hsieh T-F, An Y Q C, et al. Dynamic DNA methylation in plant growth and development. Int J Mol Sci, 2018, 19: 2144.
[139] Wang S, Wang M, Ichino L, Boone B A, Zhong Z, Papareddy R K, Lin E K, Yun J, Feng S, Jacobsen S E. MBD2 couples DNA methylation to transposable element silencing during male gametogenesis. Nat Plants, 2024, 10: 13–24.
[140] Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J, 2003, 22: 4804–4814.
[141] Liu C, Lu F, Cui X, Cao X. Histone methylation in higher plants. Annu Rev Plant Biol, 2010, 61: 395–420.
[142] Tonosaki K, Kinoshita T. Possible roles for polycomb repressive complex 2 in cereal endosperm. Front Plant Sci, 2015, 6: 144.
[143] Luo M, Platten D, Chaudhury A, Peacock W J, Dennis E S. Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Mol Plant, 2009, 2: 711–723.
[144] Gutiérrez-Marcos J F, Costa L M, Dal Prà M, Scholten S, Kranz E, Perez P, Dickinson H G. Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet, 2006, 38: 876–878.
[145] Zhang L G, Cheng Z J, Qin R Z, Qiu Y, Wang J L, Cui X K, Gu L F, Zhang X, Guo X P, Wang D, et al. Identification and characterization of an epi-allele of FIE1 reveals a regulatory linkage between two epigenetic marks in rice. Plant Cell, 2012, 24: 4407–4421.
[146] Cheng X J, Pan M Y, Zhiguo E, Zhou Y, Niu B X, Chen C. Functional divergence of two duplicated Fertilization Independent Endosperm genes in rice with respect to seed development. Plant J, 2020, 104: 124–137.
[147] Li S S, Zhou B, Peng X B, Kuang Q, Huang X L, Yao J L, Du B, Sun M X. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytol, 2014, 201: 66–79.
[148] Cheng X J, Pan M Y, E Z G, Zhou Y, Niu B X, Chen C. The maternally expressed polycomb group gene OsEMF2a is essential for endosperm cellularization and imprinting in rice. Plant Commun, 2020, 2: 100092.
[149] Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, Sakamoto S, Kijima S T, Furuumi H, Nonomura K I, Sato Y, et al. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. Plant Cell, 2021, 33: 85–103.
[150] Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer M J, Hashimoto M, Kirkbride R C, Harada J J, Zilberman D, et al. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA, 2011, 108: 1755–1762.
[151] Kordyum E L, Mosyakin S L. Endosperm of angiosperms and genomic imprinting. Life, 2020, 10: 104.
[152] Luo M, Taylor J M, Spriggs A, Zhang H Y, Wu X J, Russell S, Singh M, Koltunow A. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet, 2011, 7: e1002125.
[153] Hornslien K S, Miller J R, Grinia P E. Regulation of parent-of-origin allelic expression in the endosperm. Plant Physiol, 2019, 180: 1498–1519.
[154] Batista R, Köhler C. Genomic imprinting in plants-revisiting existing models. Genes Dev, 2020, 34: 24–36.
[155] Tiwari S, Schulz R, Ikeda Y, Dytham L, Bravo J, Mathers L, Spielman M, Guzmán P, Oakey R J, Kinoshita T, et al. MATERNALLY EXPRESSED PAB C-TERMINAL, a novel imprinted gene in Arabidopsis, encodes the conserved C-terminal domain of polyadenylate binding proteins. Plant Cell, 2008, 20: 2387–2398.
[156] Huh J H, Bauer M J, Hsieh T F, Fischer R L. Cellular programming of plant gene imprinting. Cell, 2008, 132: 735–744.
[157] Tonosaki K, Sekine D, Ohnishi T, Ono A, Furuumi H, Kurata N, Kinoshita T. Overcoming the species hybridization barrier by ploidy manipulation in the genus Oryza. Plant J, 2018, 93: 534–544.
[158] Niu B X, Deng H, Li T T, Sharma S, Yun Q B, Li Q R, Zhiguo E, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). J Integr Plant Biol, 2020, 62: 1983–1996.
[159] Wolff P, Jiang H, Wang G F, Santos-González J, Köhler C. Paternally expressed imprinted genes establish postzygotic hybridization barriers in Arabidopsis thaliana. eLife, 2015, 4: e10074.
[160] Yuan J Y, Chen S S, Jiao W, Wang L F, Wang L M, Ye W X, Lu J, Hong D L, You S L, Cheng Z K, et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol, 2017, 216: 373–387.
[161] Wang G F, Jiang H, Del Toro de León G, Martinez G, Köhler C. Sequestration of a transposon-derived siRNA by a target mimic imprinted gene induces postzygotic reproductive isolation in Arabidopsis. Dev Cell, 2018, 46: 696–705.e4.
[162] Chen C, Begcy K, Liu K, Folsom J J, Wang Z, Zhang C, Walia H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiol, 2016, 171: 606–622.
[163] Morley-Smith E R, Pike M J, Findlay K, Köckenberger W, Hill L M, Smith A M, Rawsthorne S. The transport of sugars to developing embryos is not via the bulk endosperm in oilseed rape seeds. Plant Physiol, 2008, 147: 2121–2130.
[164] Costa L M, Marshall E, Tesfaye M, Silverstein K A T, Mori M, Umetsu Y, Otterbach S L, Papareddy R, Dickinson H G, Boutiller K, et al. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science, 2014, 344: 168–172.
[165] Robert H S, Park C, Gutièrrez C L, Wójcikowska B, Pĕnčík A, Novák O, Chen J Y, Grunewald W, Dresselhaus T, Friml J, et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat Plants, 2018, 4: 548–553.
[166] Batista R A, Figueiredo D D, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev, 2019, 33: 466–476.
[167] Figueiredo D D, Köhler C. Auxin: a molecular trigger of seed development. Genes Dev, 2018, 32: 479–490.
[168] Figueiredo D D, Batista R A, Roszak P J, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife, 2016, 5: e20542.
[169] Chen J Y, Lausser A, Dresselhaus T. Hormonal responses during early embryogenesis in maize. Biochem Soc Trans, 2014, 42: 325–331.
[170] Forestan C, Varotto S. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Mol Plant, 2012, 5: 787–798.
[171] Doll N M, Depège-Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development. Mol Plant, 2017, 10: 375–388.
[172] Fichtner F, Barbier F F, Annunziata M G, Feil R, Olas J J, Mueller-Roeber B, Stitt M, Beveridge C A, Lunn J E. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate. New Phytol, 2021, 229: 2135–2151.
[173] Choudhary A, Kumar A, Kaur N, Kaur H. Molecular cues of sugar signaling in plants. Physiol Plant, 2022, 174: e13630.
[174] Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. J Exp Bot, 2014, 65: 799–807.
[175] Baena-González E, Lunn J E. SnRK1 and trehalose 6-phosphate: two ancient pathways converge to regulate plant metabolism and growth. Curr Opin Plant Biol, 2020, 55: 52–59.
[176] Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie A R, Willmitzer L, Giavalisco P. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J, 2013, 73: 897–909.
[177] Dobrenel T, Marchive C, Azzopardi M, Clément G, Moreau M, Sormani R, Robaglia C, Meyer C. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front Plant Sci, 2013, 4: 93.
[178] Montané M H, Menand B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J Exp Bot, 2013, 64: 4361–4374.
[179] 宋松泉, 唐翠芳, 程红焱, 舒凯. 种子萌发调控的研究进展. 中国科学: 生命科学, 2024, 54: 1226–1253.
Song S Q, Tang C F, Cheng H Y, Shu K. Research progress in regulation of seed germination. Sci Sin Vitae, 2024, 54: 1226–1253 (in Chinese with English abstract),
[180] Iwasaki M, Penfield S, Lopez-Molina L. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annu Rev Plant Biol, 2022, 73: 355–378.
[181] Chahtane H, Kim W, Lopez-Molina L. Primary seed dormancy: a temporally multilayered riddle waiting to be unlocked. J Exp Bot, 2017, 68: 857–869.
[182] Lee K P, Piskurewicz U, Turecková V, Strnad M, Lopez-Molina L. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc Natl Acad Sci USA, 2010, 107: 19108–19113.
[183] De Giorgi J, Fuchs C, Iwasaki M, Kim W, Piskurewicz U, Gully K, Utz-Pugin A, Mène-Saffrané L, Waridel P, Nawrath C, et al. The Arabidopsis mature endosperm promotes seedling cuticle formation via release of sulfated peptides. Dev Cell, 2021, 56: 3066–3081.e5.
[184] Kang J, Yim S, Choi H, Kim A, Lee K P, Lopez-Molina L, Martinoia E, Lee Y. Abscisic acid transporters cooperate to control seed germination. Nat Commun, 2015, 6: 8113.
[185] Bethke P C, Libourel I G L, Aoyama N, Chung Y Y, Still D W, Jones R L. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol, 2007, 143: 1173–1188.
[186] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol, 2006, 171: 501–523.
[187] Xu H H, Liu S J, Song S H, Wang W Q, Møller I M, Song S Q. Proteome changes associated with dormancy release of Dongxiang wild rice seeds. J Plant Physiol, 2016, 206: 68–86.
[188] Martínez-Andújar C, Isabel Ordiz M, Huang Z L, Nonogaki M, Beachy R N, Nonogaki H. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proc Natl Acad Sci USA, 2011, 108: 17225–17229.
[189] Liu S J, Xu H H, Wang W Q, Li N, Wang W P, Møller I M, Song S Q. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiol Plant, 2015, 154: 142–161.
[190] Berhin A, de Bellis D, Franke R B, Buono R A, Nowack M K, Nawrath C. The root cap cuticle: a cell wall structure for seedling establishment and lateral root formation. Cell, 2019, 176: 1367–1378.e8.
[191] Creff A, Brocard L, Joubès J, Taconnat L, Doll N M, Marsollier A C, Pascal S, Galletti R, Boeuf S, Moussu S, et al. A stress-response-related inter-compartmental signalling pathway regulates embryonic cuticle integrity in Arabidopsis. PLoS Genet, 2019, 15: e1007847.
[192] Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. J Exp Bot, 2017, 68: 765–783.
[193] Bailly C. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem J, 2019, 476: 3019–3032.
[194] Scheler C, Weitbrecht K, Pearce S P, Hampstead A, Büttner-Mainik A, Lee K J D, Voegele A, Oracz K, Dekkers B J W, Wang X F, et al. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol, 2015, 167: 200–215.
[195] Sechet J, Frey A, Effroy-Cuzzi D, Berger A, Perreau F, Cueff G, Charif D, Rajjou L, Mouille G, North H M, et al. Xyloglucan metabolism differentially impacts the cell wall characteristics of the endosperm and embryo during Arabidopsis seed germination. Plant Physiol, 2016, 170: 1367–1380.
[196] Shigeyama T, Watanabe A, Tokuchi K, Toh S, Sakurai N, Shibuya N, Kawakami N. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana. J Exp Bot, 2016, 67: 5615–5629.
[197] Dekkers B J W, Pearce S, van Bolderen-Veldkamp R P, Marshall A, Widera P, Gilbert J, Drost H G, Bassel G W, Müller K, King J R, et al. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol, 2013, 163: 205–215.
[198] Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An updated overview on the regulation of seed germination. Plants, 2020, 9: 703.
[199] Sánchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gómez L, Holdsworth M J, Bassel G, Oñate-Sánchez L. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Mol Plant, 2019, 12: 71–85.
[200] Xu H H, Liu S J, Song S H, Wang R X, Wang W Q, Song S Q. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds. Plant Physiol Biochem, 2016, 103: 219–242.
[201] Troncoso-Ponce M A, Barthole G, Tremblais G, To A, Miquel M, Lepiniec L, Baud S. Transcriptional activation of two delta-9 palmitoyl-ACP desaturase genes by MYB115 and MYB118 is critical for biosynthesis of omega-7 monounsaturated fatty acids in the endosperm of Arabidopsis seeds. Plant Cell, 2016, 28: 2666–2682.
[202] Miray R, Kazaz S, To A, Baud S. Molecular control of oil metabolism in the endosperm of seeds. Int J Mol Sci, 2021, 22: 1621.
[203] Hauvermale A L, Steber C M. GA signaling is essential for the embryo-to-seedling transition during Arabidopsis seed germination, a ghost story. Plant Signal Behav, 2020, 15: 1705028.
[204] Doll N M, Royek S, Fujita S, Okuda S, Chamot S, Stintzi A, Widiez T, Hothorn M, Schaller A, Geldner N, et al. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science, 2020, 367: 431–435.
[205] Paine J A, Shipton C A, Chaggar S, Howells R M, Kennedy M J, Vernon G, Wright S Y, Hinchliffe E, Adams J L, Silverstone A L, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23: 482–487.
[206] Zhu Q L, Yu S Z, Zeng D C, Liu H M, Wang H C, Yang Z F, Xie X R, Shen R X, Tan J T, Li H Y, et al. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017, 10: 918–929.
[207] Strobbe S, Verstraete J, Stove C, Van Der Straeten D. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation. Plant Biotechnol J, 2021, 19: 1253–1267.
[208] Vamvaka E, Arcalis E, Ramessar K, Evans A, O’Keefe B R, Shattock R J, Medina V, Stöger E, Christou P, Capell T. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnol J, 2016, 14: 1427–1437.
[209] He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, et al. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA, 2011, 108: 19078–19083.
[210] Qian D D, Qiu B, Zhou N, Takaiwa F, Yong W D, Qu L Q. Hypotensive activity of transgenic rice seed accumulating multiple antihypertensive peptides. J Agric Food Chem, 2020, 68: 7162–7168.
[211] Nonogaki H. Seed germination and dormancy: The classic story, new puzzles, and evolution. J Integr Plant Biol, 2019, 61: 541–563.
[212] Doll N M, Bovio S, Gaiti A, Marsollier A C, Chamot S, Moussu S, Widiez T, Ingram G. The endosperm-derived embryo sheath is an anti-adhesive structure that facilitates Cotyledon emergence during germination in Arabidopsis. Curr Biol, 2020, 30: 909–915.e4.
[213] Chandrasekaran U, Zhao X T, Luo X F, Wei S W, Shu K. Endosperm weakening: The gateway to a seed’s new life. Plant Physiol Biochem, 2022, 178: 31–39.
|