欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (6): 1122-1130.doi: 10.3724/SP.J.1006.2009.01122

• 耕作栽培·生理生化 • 上一篇    下一篇

利用RZWQM-ERES模拟华北平原农田土壤水分动态及其对作物产量的影响

房全孝1,于强2,王建林1   

  1. 1青岛农业大学 农学与植物保护学院,山东青岛266109;2中国科学院地理科学与资源所,北京100101
  • 收稿日期:2008-08-27 修回日期:2009-03-17 出版日期:2009-06-12 网络出版日期:2009-04-16
  • 基金资助:

    本研究由国家自然科学基金项目(30800164和30871485),2007年青岛市软科学研究计划课题资助。

Simulating Soil Water Dynamics and Its Effects on Crop Yield Using RZWQM-CERES in the North China Plain

FANG Quan-Xiao1,YU Qiang2,WANG Jian-Lin1   

  1. 1College of agronomy and plant protection,Qingdao Agricultural University,Qingdao 266019,China;2Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Agricultural Sciences,Beijing 100101,China
  • Received:2008-08-27 Revised:2009-03-17 Published:2009-06-12 Published online:2009-04-16

摘要:

农业系统模型是农业生产多元目标优化管理的重要工具,但由于系统模型过程复杂,参数众多,校正和验证工作一直是模型研究的重点和难点。本文对RZWQM (Root Zone Water Quality Model)CERES (Crop Environment Resource Synthesis)的结合模型RZWQM-CERES模拟土壤水分及作物产量进行了参数优化和验证,结果表明,RZWQM-CERES在禹城站和栾城站模拟不同灌溉处理土壤贮水量与测定值呈相似的变化趋势,均方根差(RMSE)分别为2.38~2.70 cm3.49~3.73 cm;作物产量模拟结果与实测值对土壤水分的响应趋势一致(R2 = 0.83***n = 22),其中在禹城站模拟小麦和玉米产量的RMSE分别为550 kg hm-2580 kg hm-2,栾城站模拟小麦产量的RMSE670 kg hm-2。以上结果表明RZWQM-CERES可作为华北平原模拟和分析土壤水分对作物产量影响的有效工具。本文初步建立了一套适合华北平原作物生产的模型参数,为利用RZWQM-CERES建立农田水分优化调控策略奠定了基础,并探讨了模型评价过程中应注意的问题。

关键词: RZWQM-CERES, 华北平原, 模型参数, 土壤水分, 作物产量

Abstract:

Agricultural system model is an important tool for optimizing multi-objective managements and decisions in agriculture. However, due to the complex process with multiple parameters in the model, calibration and validation for system model are difficult. In the paper, the hybrid model RZWQM (Root Zone Water Quality Model)-CERES (Crop Environment Resource Synthesis) was calibrated and validated for simulating soil water dynamics and crop yield under various irrigation levels at Yucheng and Luancheng Experimental Stations in the North China Plain. The results showed that the root mean standard error (RMSE) and mean relative error (MRE) of simulated soil water storage in the 0120 cm layer across different treatments at Yucheng Experimental Station ranged from 2.38 to 2.70 cm and from 2.8 to 3.3%, respectively. The RMSE and MRE of simulated leaf area index across treatments were ranged from 0.43 to 0.73 and from 12.8 to 4.2%, respectively, and the RMSE and MRE of simulated grain yield ranged from 550 to 580 kg ha-1 and from 0.6 to 7.6 %, respectively. At Luancheng Experimental Station, the RMSE and MRE of simulated soil water storage in the 0120 cm layer ranged from 3.49 to 3.73 cm and from 0.6 to 10.0 %, respectively. The RMSE and MRE of simulated grain yield were 670 kg ha-1 and 6.6%, respectively. Generally, the simulated and measured grain yields showed similar responses to soil water changes across the irrigation treatments (R2 = 0.83***, n =22). Above results indicate that RZWQM-CERES can be used as a tool to simulate and investigate the effects of soil water on crop yield in the wheat-maize cropping system in the areas. The reasonable model parameters established for the cropping system are the basis of model application for optimizing multi-objective managements and decisions in agriculture. The model parameterization, model mechanism and its flexibility were also discussed.

Key words: RZWQM-CERES, North China Plain, model parameterization, soil water, crop yield


[1] Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. Agricultural sustainability and intensive production practices. Nature, 2003, 4: 671-677

[2] Liu C M, Yu J J, Kendy E. Groundwater exploitation and its impact on the environment in the North China Plain. Water Int, 2001, 26: 265-272

[3] Zhang J H, Sui X Z, Li B, Su B L, Li J M, Zhou D X. An improved water-use efficiency of winter wheat grown under reduced irrigation. Field Crops Res, 1998, 59: 91-98

[4] Zhang Y Q, Kendy E, Yu Q, Liu, C M, Shen, Y J, Sun H Y. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric Water Manage,2004, 64: 107-122

[5] Zhang X Y, Chen S, Liu M Y, Pei D, Sun H Y. Improved Water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron J, 2005, 97: 783-790

[6] Li J M, Inanaga S, Li Z, Eneji A E. Optimizing irrigation scheduling for winter wheat in the North China Plain. Agric Water Manage, 2005, 76: 8-23

[7] Fang Q X, Chen Y H, Yu Q, Ouyang Z, Li Q Q, Yu S Z. Much improved irrigation use efficiency in an intensive wheat-maize double cropping system in the North China Plain. J Integr Plant Biol, 2007, 49: 1517-1526

[8] Fang Q X, Yu Q, Wang E L, Chen Y H, Zhang G L, Wang J, Li L H. Soil nitrate accumulation, leaching and crop nitrogen use as influenced by fertilization and irrigation in an intensive wheat-maize double cropping system in the North China Plain. Plant Soil, 2006, 284: 335-350

[9] Wang H X, Liu C M, Zhang L. Water-saving agriculture in China: An overview. Adv Agron, 2002, 75: 135-171

[10] Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manage, 2004, 69: 115-133

[11] Thomas R S, Seligman No’am G. Crop modeling: from infancy to maturity. Agron J, 1996, 88: 698-704

[12] Boote K J, Jones J W, Pickering N B. 1996. Potential uses and limitations of crop models. Agron J, 88: 704-716

[13] Jiang M(江敏), Jin Z-Q(金之庆), Ge D-K(葛道阔), Shi C-L(石春林).Validation and modification of CERES-Wheat model in winter wheat production region of China. Jiangsu J Agric Sci (江苏农学院报), 1998, 19(3): 64-67 (in Chinese with English abstract)

[14] Li J(李军), Shao M-A(邵明安), Fan T-L(樊廷录), Wang L-X(王立祥). Databases creation of crop growth model DSSAT3 on the loess plateau region of China. Agric Res in the Arid Areas (干旱地区农业研究), 2001, 19(1): 120-126(in Chinese with English abstract)

[15] Zhang Y-H(张艳红), Ma Y-L(马永良), Liao S-H(廖树华). Method of optimizing maize variety parameters in the CERES-maize simulation model. J Chin Agric Univ (中国农业大学学报), 2004, 9(4): 24-29(in Chinese with English abstract)

[16] Jin L(金梁), Hu K-L(胡克林), Li B-G(李保国), Gong Y-S(龚元石). Coupled simulation on crop growth and soil water-heat-nitrogen transport Ⅱ. Model validation and application. J Hydraulic Eng (水利学报), 2007, 38(8): 972-980 (in Chinese with English abstract)

[17] Chen X-R(成向荣), Huang M-B(黄明斌), Shao M-A(邵明安). Simulation of soil moisture dynamics in croplands using SHAW model in the semi-arid region of the Loess Plateau. Trans CSAE (农业工程学报), 2007, 23(11): 1-8 (in Chinese with English abstract)

[18] Chen Y(陈研), Hu K-L(胡克林), Feng L(冯凌), Li B-G(李保国). Optimal management of water and nitrogen for winter wheat based on simulation model in soil-plant system in agricultural field. Trans CSAE (农业工程学报), 2007, 23(6): 55-60 (in Chinese with English abstract)

[19] Xue C-Y(薛昌颖), Yang X-G(杨晓光), Deng W(邓伟), Zhang Q-P(张秋平), Yan W-X(闫伟兄), Wang H-Q(王化琪), B.A.M.Bouman. Establishing optimum irrigation schedules for aerobic rice in Beijing using ORYZA2000 model. Trans CSAE (农业工程学报), 2008, 24(4): 76-82 (in Chinese with English abstract)

[20] Ahuja L R, Johnsen K E, Rojas K W.Water and chemical transport in soil matrix and macropores. In: Ahuja, L R, Rojas K W, Hanson J D, Shafer M J, Ma L, eds. Root Zone Water Quality Model. Water Resources Publications, LLC, Highlands Ranch, CO, 2000. pp 13-50

[21] Ma L, Ahuja L R, Ascough II J C, Shaffer M J, Rojas K W, Malone R W, Cameira M R. Integrating system modeling with field research in agriculture: Applications of Root Zone Water Quality Model (RZWQM). Adv Agron, 2000, 71: 233-292

[22] Ma L, Hoogenboom G, Ahuja L R, Ascough II J C, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agric Syst, 2006, 87: 274-295

[23] Ritchie J T. Soil water balance and plant water stress. In: Tsuji G Y, Hoogenboom G, Thorton, P K eds. Understanding Options for Agricultural Production. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1998. pp 41-55

[24] Ma L, Malone R W, Heilman P, Jaynes D L, Ahuja L R, Saseendran S A, Kanwar R S, Ascough II J C. RZWQM simulated effects of crop rotation, tillage, and controlled drainage on crop yield and nitrate-N loss in drain flow. Geoderma, 2007, 140: 260-271

[25] Yu Q, Saseendran S A, Ma L, Flerchinger G N, Green T R, Ahuja L R. Modeling a wheat-maize double cropping system in China using two plant growth models in RZWQM. Agric Syst, 2006, 89: 457-477

[26] Hansen S, Shaffer M J, Jensen H E. Developments in modeling nitrogen transformations in soil. In: P. E. Bacon (Eds.). Nitrogen Fertilization in the Environment. New York. Marcel Dekker, Inc. 1995. pp 83-107

[27] Hanson J D, Rojas K W, Shaffer M J. Calibrating the Root Zone Water Quality Model. Agron J, 1999, 91: 171-177

[28] Brooks R H, Corey A T. Hydraulic properties of porous media. Hydrology paper 3. Colorado State Univ., Fort Collins, CO, USA, 1964. pp 1-15.

[29] Ma L, Nielsen D C, Ahuja L R, Kiniry J R, Hanson J D, Hoogenboom G. An evaluation of RZWQM, CROPGRO, and CERES-maize for responses to water stress in the Central Great Plains of the U. S. In: Ahuja L R, Ma L, Howell T A eds. Agricultural System Models in Field Research and Technology Transfer. Boca Raton, FL.CRC Press. 2001. pp 119-148

[30] Tsuji G Y. DSSAT35 User’s Guide. Vo1. 1-3. The University of Hawaii, 1998

[31] Legates D R, McCabe G J. Evaluating the use of “goodness-offit” measures in hydrologic and hydroclimate model validation. Water Resour Res, 1999, 35: 233-241

[32] Wu L S, Chen W, Baker J M, Lamb J A. Evaluation of the Root Zone Water Quality Model using field-measured data from a sandy soil. Agron J, 1999, 91: 177-182

[33] Jaynes D B, Miller J G. Evaluation of the Root Zone Water Quality Model using data from Iowa MESA. Agron J, 1999, 91: 192-200

[34] Hu C S, Saseendran S A, Green T R, Ma L, Li X X, Ahuja L R. Evaluating N and water management in a double cropping system using RZWQM. Vadoze Zone J, 2006, 5: 493-505

[35] Ahuja L R, Ma L. Parameterization of agricultural system models: Current approaches and future needs. In Ahuja L R, Ma L, Howell T A, eds. Agricultural system models in field research and technology transfer. Lewis Publ., New York. 2002, pp. 273-316

[36] Godwin D C, Ritchie J T, Singh U, Hunt L. A User’s Guide to CERES Wheat-V2.10. International Fertilizer Development Center, Muscle Shoals, AL, 1989

[37] Malone R W, Ma L, Ahuja L R, Rojas K W. Evaluation of the Root Zone Water Quality Model (RZWQM): A review. In: Parsons J E, Thomas D L, Huffman R L, eds. Agricultural non-point Source Water Quality Models: their use and application. Southern Cooperative Series Bulletin #398 2001. http://s1004.okstate.edu/S1004/Regional-Bulletins/Modeling-Bulletin/ RZWQM2-word.html
[1] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[2] 吴春花, 普雪可, 周永瑾, 勉有明, 苗芳芳, 李荣. 宁南旱区沟垄集雨结合覆盖对土壤水热肥与马铃薯产量的影响[J]. 作物学报, 2021, 47(11): 2208-2219.
[3] 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰, 张国平, 雷康宁. 旋耕深度对西北黄土高原旱作区土壤水分特性和马铃薯产量的影响[J]. 作物学报, 2021, 47(1): 138-148.
[4] 方彦杰,张绪成,于显枫,侯慧芝,王红丽,马一凡. 旱地全膜覆土穴播荞麦田土壤水热及产量效应研究[J]. 作物学报, 2019, 45(7): 1070-1079.
[5] 张经廷,吕丽华,董志强,张丽华,姚艳荣,申海平,姚海坡,贾秀领. 华北冬小麦开花期补灌的增产效应及其影响因素[J]. 作物学报, 2019, 45(11): 1746-1755.
[6] 侯贤清,牛有文,吴文利,徐金鹏,时龙,唐少颖,马旭,李荣. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响[J]. 作物学报, 2018, 44(10): 1560-1569.
[7] 安俊朋, 李从锋, 齐华, 隋鹏祥, 张文可, 田平, 有德宝, 梅楠, 邢静. 秸秆条带还田对东北春玉米产量、土壤水氮及根系分布的影响[J]. 作物学报, 2018, 44(05): 774-782.
[8] 杜雄,张维宏,张永升,曹彩云,李科江. 晚冬早春田间阶段性覆膜增温促进冬小麦产量提高[J]. 作物学报, 2016, 42(10): 1530-1540.
[9] 张玉娇,李军,郭正,岳志芳. 渭北旱塬免耕/深松轮耕麦田产量和土壤水分对施肥的响应模拟[J]. 作物学报, 2015, 41(11): 1726-1739.
[10] 于爱忠,柴强*. 供水与地膜覆盖对干旱灌区玉米产量的影响[J]. 作物学报, 2015, 41(05): 778-786.
[11] 柴守玺,杨长刚,张淑芳,陈恒洪,常磊. 不同覆膜方式对旱地冬小麦土壤水分和产量的影响[J]. 作物学报, 2015, 41(05): 787-796.
[12] 郑云普,徐明,王建书,邱帅,王贺新. 玉米叶片气孔特征及气体交换过程对气候变暖的响应[J]. 作物学报, 2015, 41(04): 601-612.
[13] 何立谦,张维宏,张永升,曹彩云,李科江,杜雄. 土下微膜覆盖与灌水管理对冬小麦水分利用与物质生产效果的影响[J]. 作物学报, 2014, 40(11): 1980-1989.
[14] 孙敏,温斐斐,高志强*,任爱霞,邓妍,赵维峰,赵红梅. 不同降水年型旱地小麦休闲期耕作的蓄水增产效应[J]. 作物学报, 2014, 40(08): 1459-1469.
[15] 孙敏,高志强*,赵维峰,任爱霞,邓妍,苗果园. 休闲期深松配施氮肥对旱地土壤水分及小麦籽粒蛋白质积累的影响[J]. 作物学报, 2014, 40(07): 1286-1295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!