作物学报 ›› 2015, Vol. 41 ›› Issue (04): 601-612.doi: 10.3724/SP.J.1006.2015.00601
郑云普1,2,4,徐明2,*,王建书3,邱帅2,王贺新4
ZHENG Yun-Pu1,2,4,XU Ming2,*,WANG Jian-Shu3,QIU Shuai2,WANG He-Xin3
摘要:
气孔是植物叶片表面控制大气与植物间气体交换的孔状结构, 对于生态系统碳、水循环过程的调节起着非常重要的作用。本文利用典型农田生态系统实验增温平台,研究了未来气候变暖对玉米叶片的气孔特征(包括气孔频度、气孔开口大小和形状以及气孔分布格局)和气体交换过程的影响。结果表明:(1)尽管增温并没有改变气孔密度(P>0.05),但却由于表皮细胞数目的减少导致气孔指数显著增加12% (P<0.05);(2)增温使气孔开口的长度显著减小18% (P<0.01),宽度增加26% (P<0.01),面积和周长分别增加31% (P <0.01)和13% (P<0.05);(3)实验增温还使单个气孔之间最近邻域的平均距离显著增加,表明气孔在玉米叶片上的分布变得更加均匀;(4)增温导致玉米叶片的净光合反应速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)分别增加52% (P<0.05)、163% (P<0.001)和81% (P<0.05);与此相反,玉米叶片的暗呼吸速率(Rd)却显著降低24% (P<0.01)。增温没有对细胞间CO2浓度(Ci)和水分利用效率(WUE)产生显著的影响(P>0.05)。本研究结果表明,未来全球气候变暖可能通过改变玉米叶片的气孔频度、气孔开口大小和形状及其在叶片上的空间分布格局来改变其气体交换过程。
[1]Woodward F I. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 1987, 327: 617–618[2]Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901–908[3]Franks P J, Beerling D J. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci USA, 2009, 106: 10343–10347[4]Haworth M, Heath J, McElwain J C. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Ann Bot, 2010, 105: 411–418[5]Taylor S H, Franks P J, Hulme S P. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol, 2012, 193: 387–396[6]Lake J A, Woodward F I. Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol, 2008, 179: 397–404[7]Ciais P, Denning A S, Tans P P. A three-dimensional synthesis of vegetation feedbacks in doubled CO2 climate experiments. J Geophys Res, 1997, 102: 5857–5872[8]Buckley T N, Farquhar G D, Mott K A. Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations. Plant Cell Environ, 1997, 20: 867–880[9]Apple M E, Olszyk D M, Ormrod D P. Morphology and stomatal function of douglas fir needles exposed to climate change: Elevated CO2 and temperature. Int J Plant Sci, 2000, 161: 127–132[10]Hovenden M J. The influence of temperature and genotype on the growth and stomatal morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). Aust J Bot, 2001, 49: 427-434[11]Kouwenberg L L R, Kürschner W M, McElwain J C. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry. Rev Mineral Geochem, 2007, 66: 215–241[12]Fraser L H, Greenall A, Carlyle C. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann Bot, 2009, 103: 769–775[13]Beerling D J, Chaloner W G. The impact of atmospheric CO2 and temperature change on stomatal density: Observations from Quercus robur Lammas leaves. Ann Bot, 1993, 71: 231–235[14]Ferris R, Nijs I, Behaeghe T. Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Ann Bot, 1996, 78: 489–497[15]Reddy K R, Robana R R, Hodges H F. Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics. Environ Exp Bot, 1998, 39: 117–129[16]Xu Z Z, Zhou G S, Shimizu H. Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci, 2009, 49: 1843–1851[17]Xu Z Z, Zhou G S. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil, 2005, 269: 131–139[18]张立荣, 牛海山, 汪诗平, 李英年, 赵新全. 增温与放牧对矮嵩草草甸4种植物气孔密度和气孔长度的影响. 生态学报, 2010, 30: 6961–6969Zhan L R, Niu H S, Wang S P, Li Y N, Zhao X Q. Effects of temperature increase and grazing on stomatal density and length of four alpine Kobresia meadow species, Qinghai-Tibetan Plateau. Acta Ecol Sin, 2010, 30: 6961–6969 (in Chinese with English abstract)[19]Croxdale J L. Stomatal patterning in monocotyledons: Tradescantia as a model system. J Exp Bot, 1998, 49: 279–292[20]Berger D, Altmann T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev, 2000, 14: 1119–1131[21]Croxdale J L. Stomatal patterning in angiosperms. Am J Bot, 2000, 87: 1069–1080[22]Bergermann D C, Lukowitz W, Somerville C R. Stomatal development and pattern controlled by a MAPKK Kinase. Science, 2004, 304: 1494–1497[23]Juarez M, Twigg R, Timmermans M. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544[24]Wang H, Ngwenyama N, Liu Y. Stomatal development and patterning are regulated by environmentally responsive mitogen-actived protein kinases in Arabidopsis. Plant Cell, 2007, 19: 63–73[25]Casson S A, Hetherington A M. Environmental regulation of stomatal development. Curr Opin Plant Biol, 2010, 13: 90–95[26]Ciha A J, Brun W A. Stomatal size and frequency in soybeans. Crop Sci, 1975, 15: 309–313[27]Green R L, Beard J B, Casnoff D M. Leaf blade stomatal characterizations and evapotranspiration rates of 12 cool-season perennial grasses. HortScience, 1990, 25: 760–761[28]Driscoll S P, Prins A, Olmos E. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot, 2006, 57: 381–390[29]Salisbury E J. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans R Soc Lond B Biol Sci, 1927, 216: 1–65[30]Sharma G K, Dunn D B. Environmental modifications of leaf surface traits in Datura stramonium. Can J Bot, 1969, 47: 1211–1216[31]Tichá I. Photosynthetic characteristics during ontogenesis of leaves. 7. Stomata density and sizes. Photosynthetica, 1982, 16: 375–471[32]Zacchini M, Morini S, Vitagliano C. Effect of photoperiod on some stomatal characteristics of in vitro cultured fruit tree shoots. Plant Cell Tissue Organ Cult, 1997, 49: 195–200[33]Stancato G C, Mazzoni-Viveiros S C, Luchi A E. Stomatal characteristics in different habitat forms of Brazilian species of Epidendrum (Orchidaceae). Nord J Bot, 1999, 19: 271–275[34]Tao F, Yokozawa M, Xu Y, Hayashi Y, Zhang Z. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric For Meteorol, 2006, 138: 82–92[35]Lin E. Agricultural vulnerability and adaptation to global warming in China. Water Air Soil Pollut, 1996, 92: 63–73[36]Mo X G, Liu S X, Lin Z H, Guo R P. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric Ecosyst Environ, 2009, 134: 67–78[37]Liu S X, Mo X G, Lin Z H, Xu Y Q, Ji J J, Wen G, Richey J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agric Water Manage, 2010, 97: 1195–1209[38]Tao F L, Zhang S, Zhang Z. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. Eur J Agron, 2012, 43: 201–212[39]Hou R X, Ou-Yang Z, Li Y S. Is the change of winter wheat yield under warming caused by shortened reproductive period? Ecol Evol, 2012, 2: 2999–3008[40]Lobell D B, Field C B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett, 2007, 2: 1–7[41]Ripley B D. The second-order analysis of stationary processes. J Appl Prob, 1976, 13: 255–266[42]Lomax B H, Woodward F I, Leitch I J. Genome size as a predictor of guard cell length in Arabidopsis thaliana is independent of environmental conditions. New Phytol, 2009, 181: 311–314[43]Djanaguiraman M, Prasad P V V, Boyle D L. High-temperature stress and soybean leaves: leaf anatomy and photosynthesis. Crop Sci, 2011, 51: 2125–2131 |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[14] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
[15] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
|