欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 961-967.

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉棕色纤维色泽的遗传效应

冯鸿杰1,2,王杰2,孙君灵2,张新宇1,贾银华2,孙杰1,*,杜雄明2,*   

  1. 1石河子大学农学院/新疆兵团绿洲生态农业重点实验室,新疆石河子832003;2中国农业科学院棉花研究所,农业部棉花遗传改良重点开放实验室,河南安阳455002
  • 收稿日期:2010-01-02 修回日期:2010-03-19 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 杜雄明, E-mail: duxm@cricaas.com.cn; Tel: 0372-2562252; 孙杰, E-mail: sunjiezh@yahoo.com.cn; Tel: 0993-2067366
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2004CB117301)和国家重点基础研究发展计划前其专项(2007CB116210)资助。

Genetic Effects of Fiber Color in Brown-Cotton (Gossypium hirsutum L.)

FENG Hong-Jie1,2,WANG Jie2,SUN Jun-Ling2,ZHANG Xin-Yu1,GU Yin-Hua2,SUN Jie1*,DU Xiong-Meng2,*   

  1. 1College of Agriculture,Key Oasis Eco-Agriculture Laboratory of Xinjiang Production and Construction Group,Shihezi University,Shihezi,832003,China;2Key Laboratory of Cotton Genetic Improvement of Agricultural Ministry,Cotton Research Institute,Chinese Academy of Agricultural Sciences,Anyang 455002,China
  • Received:2010-01-02 Revised:2010-03-19 Published:2010-06-12 Published online:2010-04-14
  • Contact: DU Xiong-Ming,E-mail: duxm@cricaas.com.cn; Tel: 0372-2562252;SUN Jie,E-mail: sunjiezh@yahoo.com.cn; Tel: 0993-2067366

摘要:

2个棕色和3个白色纤维陆地棉做完全双列杂交,分析陆地棉棕色纤维的遗传效应、长绒与短绒的遗传相关及F1的色泽差异。用扫描仪获取长绒和短绒图像,利用Photoshop 9.0获取图像RGB信息、量化纤维色泽。按照QGAStation软件中的ADMAD模型,采用MINQUE法分析, 调整无偏预测法(AUP)预测各遗传效应值。结果表明, 棕色棉的长绒和短绒的遗传规律一致,其加性和显性遗传方差均极显著,其中, 长绒的加性遗传方差比率为0.8501,约为显性遗传方差比率的6倍,短绒的加性遗传方差比率为0.8726,约为显性遗传方差比率的8倍;相关分析显示长绒和短绒的基因型和表现型均达显著相关,基因型相关系数达0.99355个亲本加性效应均不相同,但均达极显著水平,其中,棕色棉为正效应,白色棉为负效应。说明棕色纤维陆地棉的长绒和短绒色泽的遗传变异主要来自加性和显性效应,其中加性效应起主导作用;长绒和短绒的色泽遗传存在连锁和互作;因不同品种()的加性效应大小不同,造成不同F1纤维色泽的表现差异。

关键词: 天然棕色棉, 遗传效应, 纤维色泽, 遗传分析

Abstract:

Color cotton is a type of cotton with natural fiber color, which meets demand of people who pursue to health and environment protection, but the cotton performs low yield, poor quality and monotone color in production. To solve these problems, in this paper, we analyzed the genetic effects for brown fiber, including the genetic correlation of brown-lint and brown-fuzz, and the different performances of fiber color in the F1 of upland cotton (Gossypium hirsutum L.). Twenty cross combinations were obtained based on a complete diallel-mating system with two brown fiber and three white fiber lines of upland cotton. The fiber color was quantified by scanner and Photoshop based on the RGB parameters data of lint and fuzz. The genetic effects were predicted by the methods of MINQUE and AUP according to the ADM and AD models in QGAStation software. The results showed that the inheritance of fiber color was similar to that of fuzz color. Both of the addition and dominant effects were significant at 0.01 level of probability. The additive effect of the brown-lint was 0.8501, which was six times of its dominant effect. The additive effect of the brown-fuzz was 0.8726, which was eight times of its dominant effect. The correlation for genotype and phenotype between brown-lint and brown-fuzz was significant; with the genotype correlation coefficient between lint and fuzz colors was 0.9935. The additive effects of the five parents were significantly different, in which the effect of brown cotton was positive, but that of white cotton was negative. It indicated that the genetic variation of the brown-lint and brown-fuzz in upland cotton was mainly derived from additive and dominant effects, in which the additive effect was predominant, and there were linkage and interaction between the inheritances of lint and fuzz color. The different fiber colors of F1 were resulted from the different additive effects of different varieties or lines.

Key words: Brown cotton, Genetic effect, Fiber color, Genetic analysis

[1]Li H(李红), Li Z(李哲), Cui X-Z(崔秀珍), Wang Y-Z(王业智). Estimation of genetic parameters for hybrids of brown cotton and Long-staple upland cotton. J Henan Agric Sci (河南农业科学), 2008, 4(11):46-54 (in Chinese with English abstract)
[2]Sun D L, Sun J L, Jia Y H, Ma Z Y, Du X M. Genetic diversity of colored cotton analyzed by simple sequence repeat markers
[J].Intl J Plant Sci
[3]Sakakibara K, Nishiyama T, Kato M, Hasebe M. Isolation of homeodomain-leucine zipper genes from the Moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol, 2001, 18: 491-502
[4]HlГlСимонгуrЯнl. Genetic analysis of fiber color in up land cotton. Agron Abroad: Cotton, 1984, 3: 172-191
[5]Kohel R J. Genetic analysis of fiber color variants in cotton
[J].Crop Sci
[6]Li Y-S(李永山). Studies on fiber color inheritance of colorful cotton. J Shanxi Agric Sci (山西农业科学), 2002, 30(1): 44-46 (in Chinese with English abstract)
[7]Geng J-Y(耿军义), Wang G-Y(王国印), Zhai X-J(翟学军), Li Z-S(李之树), Liu C-J(刘存敬), Li Y-Z(李延增). Effects of colored fiber gene on economic properties of upland cotton and analysis of its inheritance. Acta Gossypii Sin (棉花学报), 1998, 10(6): 307-311 (in Chinese with English abstract)
[8]Zhan S-H(詹少华), Li Z-P(李正鹏), Lin Y(林毅), Cai Y-P(蔡永萍). Quantitative analysis on the inherited characteristics of naturally colored brown cotton fiber color. Chin Agric Sci Bull (中国农学通报), 2008, 24(12):146-148 (in Chinese with English abstract)
[9]Shi Y-Z(石玉真), Du X-M(杜雄明), Liu G-Q(刘国强), Qiang A-D(强爱娣), Zhou Z-L(周忠丽), Pan Z-E(潘兆娥), Sun J-L(孙君灵). Genetic analysis of naturally colored lint and fuzz of cotton. Cotton Sci (棉花学报), 2002, 14(4): 242-248 (in English with Chinese abstract)
[10]Sun D-L(孙东磊), Sun J-L(孙君灵), Du X-M(杜雄明), Ma Z-Y(马峙英). Genetic study on the color of fiber and linter in brown cotton. J Anhui Agric Sci (安徽农业科学), 2008, 36(15): 6254-6255 (in Chinese with English abstract)
[11]Li D-G(李定国), Nie Y-C(聂以春), Zhang X-L(张献龙). Genetic analysis of fiber colored brown upland cotton. J Huazhong Agric Univ (华中农业大学学报), 2004, 23(6): 606-609 (in Chinese with English abstract)
[12]Zhan S-H(詹少华), Lin Y(林毅). Establishment of a new determination method for the pigment of natural colorful cotton. Mol Plant Breed (分子植物育种), 2005, 3(3): 439-444 (in Chinese with English abstract)
[13]Ahuja S L, Dhayal L S, Monga D. Performance of upland coloured cotton germplasm lines in line×tester crosses
[J].Euphytica
[14]Tang B, Jenkins J N, Watson C E. Evaluation of genetic variances, heritability and correlations for yield and fiber properties among cotton F2 hybrid population
[J].Euphytica
[15]Vivek B S, Omari O, Njuguna J, Imanywoha J, Bigirwa G, Diallo A, Pixley K. Diallel analysis of grain yield and resistance to seven diseases of 12 African maize (Zea mays L.) inbred lines. Euphytica, 2010, 171: 329-340
[16]Dieckmann S, Link W. Quantitative genetic analysis of embryo heterosis in faba bean (Vicia faba L.). Theor Appl Genet, 2009, 1057-1066
[17]Zhu M-X(朱美霞), Wang Z(王珍). Genetic analysis of cotton colored fiber based on computer assisted identification. Mol Plant Breed (分子植物育种), 2003, 1(1): 126-130 (in Chinese with English abstract)
[18]Xu Z C, Zhu J. An approach for predicting heterosis based on an additive, dominance and additive × additive model with environment interaction
[J].Heredity
[19]Yuan Y-L(袁有禄), Zhang T-Z(张天真), Guo W-Z(郭旺珍). Diallel analysis of superior fiber quality properties in selected upland cottons. Acta Genet Sin (遗传学报), 2005, 32(1): 79-85 (in English with Chinese abstract)
[20]Abderrahmane Achouch, Zhu J(朱军). Simulation studies for comparing genetics models with additive-aominance-maternal effects and GE interaction effects. J Biomathem (生物数学学报), 2002, 17(2): 208-214 (in English with Chinese abstract)
[21]Zhu J(朱军). Methods of predicting genotype value and heterosis for offspring of hybrids. J Biomath (生物数学学报), 1993, 8: 32-44 (in Chinese with English abstract)
[22]Zhu J(朱军), Ji D-F(季道藩), Xu F-H(许馥华). Mixed model approaches for anayzing intra-cultivar heterosis in crop. Acta Genet Sin (遗传学报),1993, 20: 262-271 (in Chinese with English abstract)
[23]Zhu J(朱军). New approaches for analyzing quantitative traits and their applications in cotton. In: Genetic improvement of cotton: Emerging technologies. Enfield, NH, USA, Science Publishers, 2001. pp 43-63
[24]Pan Z-E(潘兆娥), Du X-M(杜雄明), Sun J-L(孙君灵), Zhou Z-L(周忠丽), Pang B-Y(庞保印). Influences of boll shading on fiber color and fiber quality of colored cotton. Cotton Sci (棉花学报), 2006, 18(5): 264-268 (in Chinese with English abstract)
[25]Zhan S-H(詹少华), Lin Y(林毅), Cai Y-P(蔡永萍), Li Z-P(李正鹏). A study on the stability of the pigment of natural brown cotton and its mechanism. Acta Laser Biol Sin (激光生物学报), 2006, 15(4): 354-358 (in Chinese with English abstract)
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[4] 吴然然, 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新. 绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析[J]. 作物学报, 2021, 47(5): 860-868.
[5] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[6] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[7] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[10] 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118.
[11] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
[12] 李英双,胡丹,聂蛟,黄科慧,张玉珂,张园莉,佘恒志,方小梅,阮仁武,易泽林. 甜荞株高和茎粗的遗传分析[J]. 作物学报, 2018, 44(8): 1185-1195.
[13] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 2018, 44(04): 614-619.
[14] 张天雨,周春雷,刘喜,孙爱伶,曹鹏辉,Thanhliem NGUYEN,田云录,翟虎渠,江玲. 一个水稻温敏黄化突变体的表型分析和基因定位[J]. 作物学报, 2017, 43(10): 1426-1433.
[15] 李自壮,徐乾坤,余海平,周亭亭,薛大伟,曾大力,郭龙彪,钱前,任德勇. 水稻淡黄叶矮化突变体yld的遗传分析及基因定位[J]. 作物学报, 2017, 43(04): 522-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!