作物学报 ›› 2010, Vol. 36 ›› Issue (06): 968-978.doi: 10.3724/SP.J.1006.2010.00968
官梅,李栒*,官春云
GUAN Mei, LI Xun, GUAN Chun-Yun
摘要:
[1] Buchanan B B, Gruissem W, Jones R L. Biochemistry & Molecular Biology of Plants. Rockville, MD, USA: Am Soc Plant Physiol, 2000 [2] Lorkowski S, Cullen P-M. Analysing Gene Expression- A Handbook of Methods Possibilities and Pitfalls. New York: John Wiley and Sons, Inc.2003 [3] Dai X-F(戴晓峰), Xiao L(肖玲), Wu Y-H(武玉花), Wu G(吴刚), Lu C-M(卢长明). An overview of plant fatty acid desaturases and the coding genes. Chin Bull Bot (植物学通报), 2007, 24(1): 105-113 (in Chinese with English abstract) [4] Fu T-D(傅廷栋), Yang G-S(杨光圣), Tu J-X(涂金星), Ma C-Z(马朝芝). The present and future of rapeseed production in China. China Lipin (中国油脂), 2003, 28(1): 11-13 (in Chinese with English abstract) [5] Guan C-Y(官春云), Liu C-L(刘春林), Chen S-Y(陈社员), Peng Q(彭琦), Li X(李栒), Guan M(官梅). High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding. Acta Agron Sin (作物学报), 2006, 32(11): 1625-1629 (in Chinese with English abstract) [6] Guan C-Y(官春云), Wang G-H(王国槐). Rapeseed quality study-II: Xiangyou 5 erucic acid content of gene analysis. J Hunan Agric Univ (Nat Sci) (湖南农学院学报), 1986, 12(l): 21-25 (in Chinese with English abstract) [7] Guan C-Y(官春云). The research progress of genetic breeding in high oleic acid rapeseed. Crop Res (作物研究), 2006, (1): 1-8 (in Chinese) [8] Guan M(官梅). High oleic acid oilseed rape breeding in Germany. Life Sci Res (生命科学研究),2004, 8(4): 28-32 (in Chinese with English abstract) [9] Li Y(李瑶). Gene Chip—Data Analysis and Processing (基因芯片数据分析与处理). Beijing: Chemical Industry Press, 2006 [10] Li Z-G(李柱刚), Ma R-C(马荣才), Cao M-Q(曹鸣庆), Cui C-S(崔崇士). Sequence and copy number variation of oleate desaturase gene (FAD2) in Brassica species. J Agric Biotechnol, 2004, 12: 515-520 (in Chinese with English abstract) [11] Taylor D C, Katavic V, Zou J, Katavic V, Zou J T, MacKenzie S L, Keller W A, An J, Friesen W, Barton D L, Pedersen K K, Giblin E M, Ge Y, Dauk M, Sonntag C, Luciw T, Males D. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyl-transferase results in increased oil content, erucic acid content and seed yield. Mol Breed, 2002, 8: 317-322 [12] Mollers C, Schierhoft A. Genetic variation of palmitate and oil content in winter oilseed rape doubled hyploid population segregating for oleate content. Crop Sci, 2002, 42: 379-384 [13] Hiz W D, Yadav N S, Reiter R S. Reducing polyunsaturation in oils of transgenic canola and soybean.In: Kader J C, Mazliak P, eds. Plant Lipid Metabolism. The Netherlands: Kluwer Academic, 1995. pp 506-508 [14] Stoufjesdijk P A, Hurlestone C, Singh S P, Green A G-40. High-oleic acid Australian Brassica napus and Brassica juncea varieties produced by co-suppression of endogenous Deltal 12-desaturases. Biochem Soc Trans, 2000, 28: 38 [15] Javidfar F, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic acid level in spring oilseed rape (Brassica napus L.). Seed Plant, 2006, 33: 515-529 [16] Mietkiewska E, Hoffman T L, Brost J M, Giblin, E M Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds.Mol Breed, 2008, 22: 619-627, Francis T, Zhang Y, Taylor D C. [17] Gurpreet Kaur, Banga S K, Banga S S. Introgression of desaturation suppressor gene(s) from Brassica napus L. to enhance oleic acid content in Brassica juncea L. Coss. Proceedings of the 4th InternationalCrops Science Congress, Australia, 2004 [18] Hu X Y, Sullivan G-M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497-507 [19] Sivaramam I, Arumugam N, Sodhi Y S, Gupta V, Mukhopadhyay A, Pradhan A K, Burma P K, Pental D. Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed, 2004, 13: 365-367 [20] Isobel A P Parkin, Sigrun M G, Andrew G S, Lewis L, Martin T, Thomas C O, Derek J L. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-782 [21] Velassco L, Jose M, Fernandez-Martinez J M, De Haro A Inheritance of increased oleic acid concentration in high erucic acid Ethiopian mustard. Crop Sci, 2003, 43: 106-109 [22] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815 [23] Schwener J, Ohlrogge J B, Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361 [24] Jones A, Davies H M, Voelker T A. Palmitoyl—acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell, 1995, 7: 359-371 Del riocelestino R, font A. De Haro-Bailón. Inheritance of high oleic acid content in the seed oil of mutant Ethiopian mustard lines and its relationship with erucic acid content. J Agric Sci, 2007, 145: 353-365 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[11] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[12] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[13] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[14] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[15] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
|