欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 968-978.doi: 10.3724/SP.J.1006.2010.00968

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因

官梅,李栒*,官春云   

  1. 湖南农业大学油料作物研究所,湖南长沙 410128
  • 收稿日期:2009-10-10 修回日期:2010-03-19 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 李栒, E-mail: lixun392007@163.com; Tel: 0731-84618782
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB10160),国家高技术研究发展计划(863计划)项目(2006AA10A113)和引进国际先进农业科学技术计划(948计划)项目(2006-Q04)资助。

Analysis of Differentially Expressed Genes in Oleic Acid Synthesis of Brassica napus by Gene Chip

GUAN Mei, LI Xun, GUAN Chun-Yun   

  1. Oil Crops Research Institute,Hunan Agricultural University,Changshe 410128,China
  • Received:2009-10-10 Revised:2010-03-19 Published:2010-06-12 Published online:2010-04-14
  • Contact: LI Xun,E-mail: lixun392007@163.com; Tel: 0731-84618782

摘要:

采用基因芯片技术对甘蓝型油菜高油酸(71.71%)和低油酸(55.6%)材料进行分析,探索油酸的差异表达基因。结果检测到差异表达基因562个,其中上调表达基因194个,下调表达基因368个。以基因芯片中油菜上调基因(NM_100489)和下调基因(NM_130183)为材料,用实时荧光定量方法验证基因芯片的结果,二者完全相符。根据基因芯片的实验结果,采用Go注释系统和数据库查询对562个差异表达基因进行功能注释表明, 主要为各种酶类、结合功能、转录调控、代谢等,还有的功能未知或与糖代谢及脂肪酸合成相关,其中丙酮酸激酶、果糖二磷酸、酰基传递/酰基ACP硫脂酶、作用于酯键的水解酶、D9硬脂酰-乙酰载体蛋白去饱和酶(ADS1)D9酰基-油脂减饱和酶2(ADS2)ω-3脂肪酸减饱和酶(fad3)等被鉴定为差异表达基因。

关键词: 基因芯片, 油菜, 油酸, 差异表达基因

Abstract:

The oil from rapeseed with high oleic oil content is insensitive to oxidation and longer shelf life. In daily diet high oleic acid oil can reduce low-density lipoprotein cholesterol levels in blood and prevent arteriosclerosis. In addition, high oleic acid content in edible oil is an important fat indicator. Oleic acid can be effectively converted to methyl ester and is beneficial to produce biodiesel. Oleic acid content in conventional rapeseed is only 17%. However, oleic acid content in low erucic acid rapeseed reaches around 60%. Differential expressed genes of oleic acid have been found in thehigh oleic acid line (71.71%) and low oleic acid line (55.6%) of Brassica napus by gene chip technic. The results showed that there were 562 differential expressed genes relating to high and low oleic acid contents in rapeseed, among them 194 were up-regulated genes and 368 were down-regulated genes. The up-regulated gene (NM_100489) and the down-regulated gene (NM_130183) were then taken as the materials. Real time RT-PCR was further used to confirm the results of gene chip, and the results of real time RT-PCR analysis agreed with the results by gene chip. According to the results of gene chip, 562 differentially expressed genes were annotated functionally by Go Annotation System. The molecular function of differential expressed genes mainly included catalysis of enzymes, binding, transcriptional regulation, metabolism and others which were unknown. Some genes relating to sugar metabolism and fatty acid synthesis were identified as differential expressed genes. They are pyruvate kinase, fructose diphosphate, acyl transfer/acyl-ACP S lipase, hydrolase acting on ester bond, D9 stearoyl acid-N-carrier protein desaturase (ADS1), D9 acyl-lipid desaturase 2 (ADS2), ω-3 fatty acid desaturation enzymes (fad3) and so on.

Key words: Gene chip, Rapeseed, Oleic acid, Differential expressed genes

[1] Buchanan B B, Gruissem W, Jones R L. Biochemistry & Molecular Biology of Plants. Rockville, MD, USA: Am Soc Plant Physiol, 2000

[2] Lorkowski S, Cullen P-M. Analysing Gene Expression- A Handbook of Methods Possibilities and Pitfalls. New York: John Wiley and Sons, Inc.2003

[3] Dai X-F(戴晓峰), Xiao L(肖玲), Wu Y-H(武玉花), Wu G(吴刚), Lu C-M(卢长明). An overview of plant fatty acid desaturases and the coding genes. Chin Bull Bot (植物学通报), 2007, 24(1): 105-113 (in Chinese with English abstract)

[4] Fu T-D(傅廷栋), Yang G-S(杨光圣), Tu J-X(涂金星), Ma C-Z(马朝芝). The present and future of rapeseed production in China. China Lipin (中国油脂), 2003, 28(1): 11-13 (in Chinese with English abstract)

[5] Guan C-Y(官春云), Liu C-L(刘春林), Chen S-Y(陈社员), Peng Q(彭琦), Li X(李栒), Guan M(官梅). High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding. Acta Agron Sin (作物学报), 2006, 32(11): 1625-1629 (in Chinese with English abstract)

[6] Guan C-Y(官春云), Wang G-H(王国槐). Rapeseed quality study-II: Xiangyou 5 erucic acid content of gene analysis. J Hunan Agric Univ (Nat Sci) (湖南农学院学报), 1986, 12(l): 21-25 (in Chinese with English abstract)

[7] Guan C-Y(官春云). The research progress of genetic breeding in high oleic acid rapeseed. Crop Res (作物研究), 2006, (1): 1-8 (in Chinese)

[8] Guan M(官梅). High oleic acid oilseed rape breeding in Germany. Life Sci Res (生命科学研究),2004, 8(4): 28-32 (in Chinese with English abstract)

[9] Li Y(李瑶). Gene Chip—Data Analysis and Processing (基因芯片数据分析与处理). Beijing: Chemical Industry Press, 2006

[10] Li Z-G(李柱刚), Ma R-C(马荣才), Cao M-Q(曹鸣庆), Cui C-S(崔崇士). Sequence and copy number variation of oleate desaturase gene (FAD2) in Brassica species. J Agric Biotechnol, 2004, 12: 515-520 (in Chinese with English abstract)

[11] Taylor D C, Katavic V, Zou J, Katavic V, Zou J T, MacKenzie S L, Keller W A, An J, Friesen W, Barton D L, Pedersen K K, Giblin E M, Ge Y, Dauk M, Sonntag C, Luciw T, Males D. Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyl-transferase results in increased oil content, erucic acid content and seed yield. Mol Breed, 2002, 8: 317-322

[12] Mollers C, Schierhoft A. Genetic variation of palmitate and oil content in winter oilseed rape doubled hyploid population segregating for oleate content. Crop Sci, 2002, 42: 379-384

[13] Hiz W D, Yadav N S, Reiter R S. Reducing polyunsaturation in oils of transgenic canola and soybean.In: Kader J C, Mazliak P, eds. Plant Lipid Metabolism. The Netherlands: Kluwer Academic, 1995. pp 506-508

[14] Stoufjesdijk P A, Hurlestone C, Singh S P, Green A G-40. High-oleic acid Australian Brassica napus and Brassica juncea varieties produced by co-suppression of endogenous Deltal 12-desaturases. Biochem Soc Trans, 2000, 28: 38

[15] Javidfar F, Zeinali H, Abdmishani C. Identification of molecular markers associated with oleic acid level in spring oilseed rape (Brassica napus L.). Seed Plant, 2006, 33: 515-529

[16] Mietkiewska E, Hoffman T L, Brost J M, Giblin, E M Hairpin-RNA mediated silencing of endogenous FAD2 gene combined with heterologous expression of Crambe abyssinica FAE gene causes an increase in the level of erucic acid in transgenic Brassica carinata seeds.Mol Breed, 2008, 22: 619-627, Francis T, Zhang Y, Taylor D C.

[17] Gurpreet Kaur, Banga S K, Banga S S. Introgression of desaturation suppressor gene(s) from Brassica napus L. to enhance oleic acid content in Brassica juncea L. Coss. Proceedings of the 4th InternationalCrops Science Congress, Australia, 2004

[18] Hu X Y, Sullivan G-M, Gupta M, Thompson S A. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet, 2006, 113: 497-507

[19] Sivaramam I, Arumugam N, Sodhi Y S, Gupta V, Mukhopadhyay A, Pradhan A K, Burma P K, Pental D. Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed, 2004, 13: 365-367

[20] Isobel A P Parkin, Sigrun M G, Andrew G S, Lewis L, Martin T, Thomas C O, Derek J L. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-782

[21] Velassco L, Jose M, Fernandez-Martinez J M, De Haro A Inheritance of increased oleic acid concentration in high erucic acid Ethiopian mustard. Crop Sci, 2003, 43: 106-109

[22] Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815

[23] Schwener J, Ohlrogge J B, Probing in vivo metabolism by stable isotope labeling of storage lipids and proteins in developing Brassica napus embryos. Plant Physiol, 2002, 130: 347-361

[24] Jones A, Davies H M, Voelker T A. Palmitoyl—acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell, 1995, 7: 359-371
Del riocelestino R, font A. De Haro-Bailón. Inheritance of high oleic acid content in the seed oil of mutant Ethiopian mustard lines and its relationship with erucic acid content. J Agric Sci, 2007, 145: 353-365
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[4] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[5] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[6] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[9] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[10] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[11] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[14] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[15] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!