欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1698-1706.doi: 10.3724/SP.J.1006.2010.01698

• 耕作栽培·生理生化 • 上一篇    下一篇

黄河三角洲盐渍棉花施用氮、磷、钾肥的效应研究

辛承松,董合忠,罗振,唐薇,张冬梅,李维江,孔祥强   

  1. 山东省农业科学院棉花研究中心 / 山东省棉花栽培生理重点实验室,山东济南 250100
  • 收稿日期:2010-01-07 修回日期:2010-06-28 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 基金资助:

    本研究由国家棉花产业技术体系建设专项资金,国家公益性行业(农业)科研专项(nyhyzx07-005-02)和山东农业科学院高技术自主创新基金项目(2006YCX009,2007YCX024-03)资助。

Effects of N, P, and K Fertilizer Application on Cotton Grown in Saline Soil in the Yellow River Delta

XIN Cheng-Song,DONG  He-Zhong,LUO Zhen,TANG  Wei,ZHANG  Dong-Mei,LI  Wei-Jiang,KONG Xiang-Qiang   

  1. Cotton Research Center,Shandong Academy of Agricultural Sciences/Key Laboratory for Cotton Culture and Physiology of Shandong Province,Jinan 250100,China
  • Received:2010-01-07 Revised:2010-06-28 Published:2010-10-12 Published online:2010-08-04

摘要: 为探讨盐渍土抗虫棉施用NPK肥的效应及其营养生理机制,指导滨海盐渍土抗虫棉合理施肥,在黄河三角洲盐渍土低、中、高盐棉田种植转Bt基因抗虫棉鲁棉研28,研究N、P、K肥配合施用对其养分吸收利用、Na+吸收积累、光合速率、干物质积累和产量的影响。结果表明,N、P肥配合,尤其是N、P、K肥配合施用显著增加了低、中、高盐田棉花的N、P、K养分吸收量,减少了Na+吸收积累量。低、中、高盐田棉花的N、P、K养分农学利用效率均以NPK配施的处理较高,氮养分农学利用效率分别为0.20、1.95和2.07 kg皮棉 kg–1 N,磷养分农学利用效率分别为0.87、8.35和8.71 kg皮棉 kg–1 P,钾养分农学利用效率分别为0.26、2.89和3.77 kg皮棉 kg–1 K。N、P、K肥配合施用还维持了较高的棉株叶面积、叶绿素含量和净光合速率。低、中、高盐田棉花的生物产量和皮棉产量也均以NPK配施的处理较高,皮棉产量分别增产2.53%、28.67%和30.47%。中、高盐棉田的施肥效应明显好于低盐棉田。表明根据盐碱程度分类合理施肥是减轻盐渍土营养障碍、改善棉花营养、提高养分农学利用效率和棉花产量的有效途径。

关键词: 抗虫棉, 盐渍土, N、P、K肥, 养分农学利用效率, 施肥效应

Abstract: It is urgent and necessary to provide the technology of economic application on fertilizers for nutrition improvement of Bt cotton and cotton production in coastal saline soil in the Yellow River Delta. The experiments were conducted with Bt cotton cultivar SCRC28 in coastal saline soil in the Yellow River Delta, Shandong province. The effects of different amounts and ratios of N, P and K, and N and P fertilizers on nutrient (N, P and K) assimilation, Na+ assimilation, net photosynthetic rate (Pn), dry matter accumulation and lint yield of Bt cotton were investigated in three types (low, middle and high levels of salinity) of coastal saline field. The results showed that nutrient uptake of Bt cotton in the treatments of NP, NPK especially, in low, middle and high levels of salinity field was significantly higher than that in corresponding controls. And the Na+ uptake of cotton in the same treatments was significantly lower than that in corresponding controls. Nutrient use efficiency in agronomy(NUEa) of cotton in the NPK treatment in low, middle and high levels of salinity field was the highest among the three treatments. NUEa of Bt cotton in the NPK treatment in low, middle and high levels of salinity field was 0.20, 1.95, and 2.07 kg lint kg–1 N, 0.87, 8.35, and 8.71 kg lint kg–1 P, and 0.26, 2.89, and 3.77 kg lint kg–1 K, respectively. The coordination of N, P and K fertilizers could maintain the highest leaf area, chlorophyll content and Pn among the three treatments in low, middle and high levels of salinity field, respectively. The biomass yield and lint yield of Bt cotton in the NPK treatment in low, middle and high levels of salinity field were also the highest among the three treatments, respectively. The lint yield in the NPK treatments in low, middle and high levels of salinity field was 2.53%, 28.67% and 30.47% higher, respectively, than that in corresponding controls. And the fertilization effects in middle and high levels of salinity field were obviously better than those in low level of salinity field. Further analysis indicated, rational fertilizer application, according to the classification of soil salinity, was an effective way to alleviate nutrition obstacles of saline soil, improve cotton nutrition, and enhance the NUEa and cotton yield in coastal saline fields.

Key words: Bt cotton, Saline soil, N,P and K fertilizer, NUEa, Fertilization effects

[1]Li W-B(李文炳). Shandong Cotton (山东棉花). Shanghai: Shanghai Sci & Tech Publishers, 2001. pp 297–336, 407–435 (in Chinese)
[2]Guan Y-X(关元秀), Liu G-H(刘高焕), Liu Q-S(刘庆生), Ye Q-H(叶庆华). The study on salt-affected soils in the Yellow River Delta based on remote sensing. J Remote Sens (遥感学报), 2001, 5(1): 46–52 (in Chinese with English abstract)
[3]Guan Y-X(关元秀), Liu G-H(刘高焕). Remote sensing detection of dynamic variation of the saline land in the Yellow River Delta. Remote Sens Land Resour (国土资源遥感), 2003, (2): 19–23 (in Chinese with English abstract)
[4]Dong H-Z(董合忠), Xin C-S(辛承松), Tang W(唐薇), Li W-J(李维江), Zhang D-M(张冬梅), Wen S-M(温四民). Seasonal changes of salinity and nutrients in the coastal saline soil in Dongying, Shandong, and their effects on cotton yield. Cotton Sci (棉花学报), 2006, 18(6): 362–366 (in Chinese with English abstract)
[5]Xin C-S(辛承松), Dong H-Z(董合忠), Tang W(唐薇), Li W-J(李维江), Zhang D-M(张冬梅), Luo Z(罗振). Effects of coastal saline soils with different fertility on plant growth and development as well as physiological characteristics in cotton. Cotton Sci (棉花学报), 2007, 19(2): 124–128 (in Chinese with English abstract)
[6]Xin C-S(辛承松), Dong H-Z(董合忠), Tang W(唐薇), Zhang D-M(张冬梅), Luo Z(罗振), Li W-J(李维江). Characteristics of nutrient assimilation and dry matter accumulation of Bt cotton (Gossypium hirsutum L.) in coastal saline soil. Acta Agron Sin (作物学报), 2008, 34(11): 2033–2040 (in Chinese with English abstract)
[7]Xin C-S(辛承松), Dong H-Z(董合忠), Tang W(唐薇), Wen S-M(温四民). Physiological and molecular mechanisms of salt injury and salt tolerance in cotton. Cotton Sci (棉花学报), 2005, 17(5): 309–313 (in Chinese with English abstract)
[8]Yang L-L(杨莉林), Li J-H(李金海). Nutrition and fertilizer effect of saline soil in China. Chin J Eco-Agric (中国生态农业学报), 2001, 9(2): 79–81 (in Chinese with English abstract)
[9]Li Y-K(李酉开), Jiang B-F(蒋柏藩), Yuan K-N(袁可能). General Methods for Soil Agrochemistry Analysis (土壤农业化学常规分析方法). Beijing: Science Press, 1983 (in Chinese)
[10]Tu S-X(涂书新), Guo Z-F(郭智芬), Sun J-H(孙锦荷). Some advances of Cl in soil. Soils (土壤), 1998, (3): 125–129 (in Chinese)
[11]Li J-H(李加宏), Yu R-P(俞仁培). Salt uptake of crops and the prediction of salt injuries to crops. Acta Pedolog Sin (土壤学报), 1988, 35(3): 36–38 (in Chinese with English abstract)
[12]Ahmad S, Khan N, Iqbal M Z, Hussain A, Hassan M. Salt tole-  rance of cotton (Gossypium Hirsutum L.). Asian J Plant Sci, 2002, 1(6): 715–719
[13]Sun X-F(孙小芳), Liu Y-L(刘友良), Chen B(陈泌). Research progress on salt tolerance of cotton. Acta Gossypii Sin (棉花学报), 1998, 10(3): 118–124 (in Chinese with English abstract)
[14]Glass A D M. Plant Nutrition: An Introduction to Current Concepts. MA, US: Jones & Bartlett Publisher, 1989. pp 24–28
[15]Cram W J. Negative Feedback Regulation of Transport in Cells: The Maintenance of Turgor Volume and Nutrient Supply. Encycolpedia of Plant Physiology, New Series, Vol. 2. Berlin, Germany: Springer-Verlag Gmbh, 1976. pp 284–316
[16]Chen G-A(陈国安). Effect of sodium on cotton growth and potassium uptake and transfer. Soils (土壤), 2001, 33(3): 138–141 (in Chinese)
[17]Flowers T J, Lauchli A. Sodium Versus Potassium: Substitution and Compartmentation. Encyclopedia of Plant Physiology, New Series, Vol. 15. Berlin, Germany: Springer-Verlag Gmbh, 1983. pp 651–681
[18]Leigh R A, Wyn Jones R G. Cellular Compartmentation in Plant Nutrition: Advances in Plant Nutrition. New York: Praeger Publishers, 1986. pp 249–280
[19]Liu R-G(刘荣根), Wu M-J(吴梅菊), Lu F-M(陆凤鸣). Study on effects of K fertilizer for crops in coastal saline soil. Soils (土壤), 1998, 30(4): 222–223 (in Chinese)
[20]Ashraf M. Salt tolerance of cotton: Some new advances. Critical Rev Plant Sci, 2002, 21: 1–30
[21]Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25: 239–250
[22]Haefele S M, Wopereis M C S, Ndiaye M K, Barro S E, Isselmoue M O. Internal nutrient efficiencies, fertilizer recovery rates and indigenous nutrient supply of irrigated lowland rice in Sahelian West Africa. Field Crops Res, 2003, 80: 19–32
[23]Zeng J-M(曾建敏), Cui K-H(崔克辉), Huang J-L(黄见良), He F(贺帆), Peng S-B(彭少兵). Responses of physio-biochemical properties to N-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2007, 33(7): 1168–1176 (in Chinese with English abstract)
[24]Xing X-R(邢雪荣), Han X-G(韩兴国), Chen L-Z(陈灵芝). A review on research of plant nutrient use efficiency. Chin J Appl Ecol (应用生态学报), 2000, 11(5): 785–790 (in Chinese with English abstract)
[25]Wang X-H(王希华), Huang J-J(黄建军), Yan E-R(闫恩荣). Leaf nutrient use efficiency of some trees in Tiantong forest park. Chin J Ecol (生态学杂志), 2004, 23(4): 13–16 (in Chinese with English abstract)
[26]Li J-Y(李俊义), Liu R-R(刘荣荣). Fertilizer Application in Balance and Nutrient Diagnosis of Cotton (棉花平衡施肥与营养诊断). Beijing: China Agricultural Sci & Tech Press, 1992. pp 31–46 (in Chinese)
[1] 周向阳,赵亮,狄佳春,陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位[J]. 作物学报, 2019, 45(9): 1440-1445.
[2] 苏长青, 谢家建, 孙爻, 彭于发. 一种适合转基因棉CpTIcry1A基因剂量测定的标准质粒的构建和应用[J]. 作物学报, 2011, 37(09): 1533-1539.
[3] 辛承松;董合忠;唐薇;张冬梅;罗振;李维江. 滨海盐渍土抗虫棉养分吸收和干物质积累特点[J]. 作物学报, 2008, 34(11): 2033-2040.
[4] 徐大勇;金军;胡曙鋆;高云;杨建昌;朱庆森. 氮磷钾肥运筹对稻米直链淀粉含量和淀粉黏滞谱特征参数的影响[J]. 作物学报, 2005, 31(07): 921-925.
[5] 陈源;顾万荣;陈德华;田明军;夏文省;周芳刚;季春梅;吴云康. 转基因抗虫棉杂交种育苗移栽高产栽培途径的研究[J]. 作物学报, 2005, 31(04): 487-492.
[6] 夏兰芹;徐琼芳;郭三堆. 抗虫棉生长发育过程中Bt杀虫基因及其表达的变化[J]. 作物学报, 2005, 31(02): 197-202.
[7] 吴征彬;陈鹏;杨业华;徐裕森;谢红彬. 不同类型抗虫陆地棉对红铃虫的抗性研究[J]. 作物学报, 2005, 31(01): 53-57.
[8] 刘志;郭旺珍;朱协飞;朱祯;张天真. 转Bt+GNA双价基因抗虫棉花中抗虫基因及其抗虫性的遗传稳定性[J]. 作物学报, 2004, 30(01): 6-11.
[9] 袁小玲;唐灿明;张天真. 转Bt+CpTI双价抗虫棉的遗传稳定性及生育后期对棉铃虫抗性表现[J]. 作物学报, 2002, 28(02): 179-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!