作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1691-1697.doi: 10.3724/SP.J.1006.2010.01691
黄天带,李哲,孙爱花,周权男,华玉伟,黄华孙*
HUANG Tian-Dai,LI Zhe,SUN Ai-Hua,ZHOU Quan-Nan,HUA Yu-Wei,HUANG Hua-Sun*
摘要: 为建立根癌农杆菌介导的橡胶树遗传转化体系,以花药愈伤组织为受体,研究了农杆菌菌株、共培养温度、共培养时间、乙酰丁香酮(AS)等因素对遗传转化效率的影响。结果表明,农杆菌菌株、共培养温度和共培养时间对转化效率具有显著影响,AS不影响转化效率。2.2万个花药愈伤组织经EHA105菌株侵染后,转入未添加AS的培养基,22℃共培养6 d,通过50 mg L–1卡那霉素抗性筛选、叶片GUS染色、uidA和Npt II基因PCR特异扩增、PCR产物测序及Npt II基因Southern检测,鉴定出11株转基因植株,并通过嫁接和次生体胚发生,获得来自8个转基因株系的681株转基因植株,移栽成活253株。
[1] Venkatachalam P, Jayashree R, Rekha K, Sushmakumari S, Sobha S, Kumari Jayasree P, Kala R G, Thulaseedharan A. Rubber tree (Hevea brasiliensis muell. Arg). Meth Mol Biol, 2006, 344: 153–164 [2] Arokiaraj P, Jones H, Jaafar H, Coomber S, Charlwood B V. Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubb Res, 1996, 11: 77–87 [3] Arokiaraj P, Yeang H Y, Cheong K F, Hamzah S, Jones H, Coomber S, Charlwood B V. CaMV 35S promoter directs β-glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep, 1998, 17: 621–625 [4] Montoro P, Teinseree N, Rattana W, Kongsawadworakul P, Michaux-Ferriere N. Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli. Plant Cell Rep, 2000, 19: 851–855 [5] Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferriere N, Monkolsook Y, Kanthapura R, Adunsadthapong S. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep, 2003, 21: 1095–1102 [6] Blanc G, Baptiste C, Oliver G, Martin F, Montoro P. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Muëll Arg. plants. Plant Cell Rep, 2006, 24: 724–733 [7] Arokiaraj P, Rüker F, Obermayr E, Shamsul Bahri A R, Hafsah J, Carter D C, Yeang H Y. Expression of human serum albumin in transgenic Hevea brasiliensis. J Rubb Res, 2002, 5: 157–166 [8] Jayashree R, Rekha K, Venkatachalam P, Uratsu S L, Dandekar A M, Kumari Jayasree P, Kala R G, Priya P, Sushma Kumari S, Sobha S, Ashokan M P, Sethuraj M R, Thulaseedharan A. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep, 2003, 22: 201–209 [9] Leclercq J, Martin F, Lardet L, Rio M, Montoro P. Genetic transformation and regeneration of plant over-expressing CuZnSOD gene to control oxidative stress in rubber tree. International Rubber Conference, Siem Reap, Cambodia, 2007 [10] Liu Z-X(刘志昕), Deng X-D(邓小东), Wei Y-W(魏源文), Wang Z-Y(王泽云), Chen X-T(陈雄庭), Wu H-D(吴蝴蝶), Zheng X-Q(郑学勤). Construction of antisense expression vector of Hevein gene and transformation of rubber tree. Chin J Trop Crop (热带作物学报), 2000, 12(21): 102–107 (in Chinese with English abstract) [11] Zhao H(赵辉), Zhao R-J(赵润江), Chen X-T(陈雄庭), Peng M(彭明). Establishment of a highly efficient Agrobacterium-mediated transformation system for Hevea brasiliensis. Chin J Trop Crop(热带作物学报), 2008, 29(6): 678–683 (in Chinese with English abstract) [12] Varghese Y A, Knaak C, Sethuraj M R, Ecke W. Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasiliensis. Plant Breed, 1997, 116: 47–52 [13] Hua Y W, Huang T D, Huang H S. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed, 2009, (doi:10.1111/j.1439-0523.2009.01663.x) [14] Huang S-F(黄守锋). A novel approach to rubber propagation—mini-seedling budding. Chin J Trop Crops (热带作物学报), 1989, 10(1): 25–31 (in Chinese with English abstract) [15] Hiei Y, Komari T. Agrobacterium -mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc, 2008, 3: 824–834 [16] Zhao Z Y, Gu W, Cai T, Tagliani L A, Hondred D, Bond D, Krell S, Rudert M L, Bruce W B, Pierce D A. Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett, 1998, 72: 34–37 [17] Vega J M, Yu W, Kennon A R, Chen X, Zhang Z J. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep, 2008, 27: 297–305 [18] Sharma M K, Solanke A U, Jani D, Singh Y, Sharma A K. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci, 2009, 34: 423–433 [19] Leclercq J, Martin F, Montoro P. Shortening genetic transformation procedure by using green fluorescent protein marker. International Rubber Conference, Ho Chi Minh, Vietnam, 2006 [20] Kala R G, Anu K S, Manesh K, Saleena A, Kumari Jayasree P, Narayanan P R, Thomas G, Thulaseedharan A. Agrobacterium mediated genetic transformation in Hevea brasiliensis for recombinant protein production. J Plantation Crops, 2006, 34 : 582–586 [21] Arokiaraj P, Wan Abdul Rahaman W Y. Agrobacterium - mediated transformation of Hevea cells derived from in vitro and in vivo seedling cultures. J Nat Rubb Res, 1991, 6: 55–61 [22] Wang Y(王颖), Chen X-T(陈雄庭), Zhang X-J(张秀娟), Peng M(彭明). Transfer of GAI gene into Hevea brasiliensis by particle bombardment. J Trop Subtrop Bot热带亚热带植物学报), 2006, 14(3): 179–182 (in Chinese with English abstract) ( [23] Hong L(洪磊), Wang Y(王颖), Zhang X-J(张秀娟), Chen X-T(陈雄庭).Study on the conditions of the Agrobacterium- mediated genetic transformation for Hevea brasiliensis. Mod Agric Sci (现代农业科学), 2009, 16(5): 38–40 (in Chinese with English abstract) [24] Carron M P, Lardet L, Leconte A, Dea B G, Keli J, Granet F, Julien J, Teerawatanasuk K, Montoro P. Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis, Muëll. Arg.). Acta Hort, 2009, 812: 485–492 |
[1] | 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907. |
[2] | 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683. |
[3] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[4] | 郑燕燕, 黄德华, 李金龙, 张会飞, 鲍印广, 倪飞, 吴佳洁. 小麦高效转基因受体品系CB037的抗条锈性分析[J]. 作物学报, 2020, 46(11): 1743-1749. |
[5] | 张玉杰,张园园,张华宁,秦宁,李国良,郭秀林. 小麦热激转录因子基因TaHsfA2e特性及耐热性功能初探[J]. 作物学报, 2018, 44(12): 1818-1828. |
[6] | 陈倩楠,王轲,汤沙,杜丽璞,智慧,贾冠清,赵宝华,叶兴国,刁现民. 以抗除草剂Bar基因稳定转化谷子技术研究[J]. 作物学报, 2018, 44(10): 1423-1432. |
[7] | 寇莹莹,宋英今,杨少辉,王洁华. 植酸酶phyA基因的密码子优化及其在大豆中的表达[J]. 作物学报, 2016, 42(12): 1798-1804. |
[8] | 王诺菡,于霁雯,吴嫚,马启峰,李兴丽,裴文锋,李海晶,黄双领,张金发,喻树迅. 棉花GhMYB0基因的克隆、表达分析及功能鉴定[J]. 作物学报, 2014, 40(09): 1540-1548. |
[9] | 王云鹏,马景勇,马瑞,马建,刘文国. 土壤宏基因组中抗草甘膦新基因的克隆与转化水稻的研究[J]. 作物学报, 2014, 40(07): 1190-1196. |
[10] | 章洁琼,李红艳,胡小南,单志慧,唐桂香. 农杆菌介导的RNAi CP基因在大豆中的转化[J]. 作物学报, 2013, 39(09): 1594-1601. |
[11] | 文明富, 陈新, 王海燕, 卢诚, 王文泉. 木薯基因组SSR和EST-SSR在麻疯树和橡胶树中的通用性分析[J]. 作物学报, 2011, 37(01): 74-78. |
[12] | 马雄风,喻春明,唐守伟,郭三堆,张锐,王延周,朱爱国,朱四元,熊和平. 根癌农杆菌介导的转双价抗虫基因(CryIA+CpTI)苎麻[J]. 作物学报, 2010, 36(05): 788-793. |
[13] | 张宁,司怀军,栗亮,杨涛,张春凤,王蒂. 转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性[J]. 作物学报, 2009, 35(6): 1146-1150. |
[14] | 张海娜;李小娟;李存东;肖凯. 过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响[J]. 作物学报, 2008, 34(08): 1403-1408. |
[15] | 刘峰;万书波;毕玉平;闫彩霞;李春娟;赵晋平;单世华. 农杆菌介导轮状病毒抗原蛋白VP4基因遗传转化花生的研究[J]. 作物学报, 2008, 34(07): 1285-1289. |
|