欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1540-1548.doi: 10.3724/SP.J.1006.2014.01540

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

棉花GhMYB0基因的克隆、表达分析及功能鉴定

王诺菡1,2,于霁雯2,吴嫚2,马启峰1,李兴丽2,裴文锋2,李海晶2,黄双领2,张金发2,喻树迅1,2,   

  1. 1西北农林科技大学农学院, 陕西杨凌 712100; 2中国农业科学院棉花研究所 / 棉花生物学国家重点实验室, 河南安阳 455000
  • 收稿日期:2014-01-23 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-09
  • 通讯作者: 喻树迅, E-mail: yu@cricaas.com.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB126006)资助。

Cloning, Expression, and Functional Analysis of GhMYB0 Gene from Cotton (Gossypium hirsumtum L.)

WANG Nuo-Han1,2,YU Ji-Wen2,WU Man2,MA Qi-Feng1,LI Xing-Li2,PEI Wen-Feng2,LI Hai-Jing2,HUANG Shuang-Ling2,ZHANG Jin-Fa2,YU Shu-Xun1,2,   

  1. 1 College of Agronomy, Northwest A&F University, Yangling 712100, China; 2 State Key Laboratory of Cotton Biology / Cotton Research Institute , Chinese Academy Agricultural Sciences, Anyang 455000, China
  • Received:2014-01-23 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-09
  • Contact: 喻树迅, E-mail: yu@cricaas.com.cn

摘要:

MYB类转录因子是植物转录因子最大的家族之一, 参与控制植物腺毛细胞的模式和形态建成。本研究利用雷蒙德氏棉(Gossypium raimondii) D5基因组数据库以AtMYB0 (GL1, NM_113708)蛋白为参比序列获得同源基因GrMYB0, 从徐州142克隆了陆地棉的GhMYB0, 其开放阅读框长度为843 bp, 编码280个氨基酸。经过保守结构域分析和亚细胞定位确定GhMYB0R2R3-MYB转录因子。qRT-PCR的结果表明, GhMYB0在徐州142开花当天开始高调表达, 开花后20 d表达量达高峰; 在所有的组织器官中, 花中表达量最高, 其次为胚珠。转基因功能分析结果表明, 在野生型拟南芥(Columbia)中过表达GhMYB0, 使其叶片表皮毛与野生型相比明显减少; 该基因在拟南芥突变体gl-1中过表达, 能恢复表皮毛缺失型突变体的表型, 说明该基因可能对拟南芥表皮毛的形态建成发挥一定作用, 本试验为研究R2R3-MYB转录因子在棉纤维起始和伸长过程中的调控作用提供有力证据。

关键词: 棉花, MYB转录因子, 植物表达载体构建, 遗传转化

Abstract:

MYB transcription factor, one of the most important protein families in plants, is involved in the regulation of secondary metabolism, morphogenesis of plant, responding to environment stress and plant hormone. In this study, we used D5 genomic bank of Gossypium raimondii as the reference to AtMYB0 (GL1, NM_113708) protein, and cloned the full-length cDNA of a new MYB transcription factor gene GhMYB0 from cotton (Gossypium hirsutum L.). The open reading frame of GhMYB0 is 843 bp in length, which encodes 280 amino acid residues. GhMYB0 was confirmed as R2R3-MYB transcription factor via conserved structure analysis and subcellular localization. The qRT-PCR result indicated that GhMYB0 was highly expressed at the blossom day, its expresssion amount reached the peak after 20 days, with the most amount in flower, then in ovules. Transgenic funtion analysis indicated that GhMYB0 over-expressed in Arabidopsis lines, showing fewer trichomes in leaf epiderm than in that of the wild type, which suggests that the gene can restore the notrichome phenotype of gl-1 mutant of Arabidopsis. In addition, the transgenic lines had shorter plant heights, longer vegetative growth time, and pollen abortion.

Key words: Cotton, MYB transcription factor, Construction of plant expression vector, Genetic transformation

[1]Ramsey J C, Berlin J D. Ultrastructure of early stage of cotton fiber differentiation. Bot Gazette, 1976, 137: 11–19



[2]Rinehart J A, Petersen M W, John M E. Tissue-specific and developmental regulation of cotton gene FbL2A (demonstration of promoter activity in transgenic plants). Plant Physiol, 1996, 112: 1331–1334



[3]Stewart J M. Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot, 1975, 62: 723–730



[4]Paz A J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory C1 locus of Zea mays encodes a protein with homology to myb on-cogene products and with structural similarities to transcriptional activators. EMBO J, 1987, 6: 3553–3558



[5]Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, Zhang R, Aimolo S, Ametani Y, Hirata Z, Sarai A, Ishii S, Nishimura Y. Comparison of the free and DNA complex forms of the DNA-binding domain of c-MYB. Nat Struct Biol, 1995, 2: 309–320



[6]Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. MYB transcription factors in Arabidopsis. Trends Plant Sci, 2010, 15: 573–581



[7]刘翔, 左开井, 张飞, 许洁婷, 黎颖, 赵凌侠, 唐克轩. MYB类转录因子在植物腺毛发育中的作用研究进展. 上海交通大学学报(农业科学版), 2010, 28(2): 188–194



Liu X, Zuo K J, Zhang F, Xu J T, Li Y, Zhao L X, Tang K X. Progress on the roles of MYB transcription factors on plant trichome development. J Shanghai Jiaotong Univ (Agric Sci), 2010, 28(2): 188–194 (in Chinese with English abstract)



[8]Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol, 2008, 59: 365–386



[9]Koshion-Kimura Y, Wada T, Tachibana T, Tsugeki R, Lshiguro S, Okada K. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. Plant Cell Physiol, 2005, 46: 817–826



[10]Larkin J C, Oppenheimer D G, Lloyd A M, Paparozzi E T, Marks M. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell, 1994, 6: 1065–1076



[11]Lee M M, Schiefelbein J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell, 1999, 99: 473–483



[12]Lee M M, Schiefelbein J. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis. Development, 2001, 128: 1539–1546



[13]Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 1991, 67:483–493



[14]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid (Gossypium hirsutum L.). Mol Gen Genet, 1999, 261:660–670



[15]Guan X, Lee J J, Pang M, Shi X, Stelly D M, Chen Z J. Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS One, 2011, DOI: 10.1371/journal.pone.0021301



[16]Wu Y, Machado A C, White R G, Llewellyn D J, Dennis E S. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol, 2006, 47: 107–127



[17]Lee J J, Hassan O S, Gao W, Wei N E, Kohel R J, Chen X Y, Payton P, Sze S H, Stelly D M, Chen Z J. Developmental and gene expression analyses of a cotton naked seed mutant. Planta, 2006, 223: 418–432



[18]Machado A, Wu Y, Yang Y, Llewellyn D J, Dennis E S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J, 2009, 59: 52–62



[19]Suo J, Liang X, Pu L, Zhang Y, Xue Y. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta, 2003, 1630: 25–34



[20]宋国立, 崔荣霞, 王坤波, 郭立平, 黎绍惠, 王春英, 张香娣. 改良CTAB法快速提取棉花DNA. 棉花学报, 1998, 10: 273–275



Song G L, Cui R Y, Wang K B, Guo L P, Li S H, Wang C Y, Zhang X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Acta Gossypii Sin, 1998, 10: 273–275 (in Chinese with English abstract)



[21]Steven J C, Andrew F B. Floral dip: a simpli?ed method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[22]Hülskamp M. Plant trichomes: a model for cell differentiation. Nat Rev Mol Cell Biol, 2004, 5: 471–480



[23]Li M Z, Elledge S J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods, 2007, 4: 251–256



[24]Mayer F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95: 805–815



[25]Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y. Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell, 1994, 79: 639–648



[26]Payne C, Zhang F, Lloyd A. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics, 2000, 156: 1349–1362



[27]Percival A E. The national collection of Gossypium germplasm. Southern Cooperative Series Bull, 1987, 12: 321–362



[28]Kirik V, Simon M, Huelskamp M, Schiefelbein J. The enhancer of TRY and CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol, 2004, 268: 506–513



[29]Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jürgens G, Hülskamp M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J, 2002, 21: 5036–5046



[30]Wang G, Zhao G H, Jia Y H, Du X M. Identification and characterization of cotton genes involved in fuzz-fiber development. J Integr Plant Biol, 2013, 55: 619–630



[31]Turley R B, Kloth R H. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.). J Hered, 2002, 93: 359–364



[32]Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135: 1991–1999



[33]Griffiths J, Murase K, Rieu I, Zentella R, Zhang Z L, Powers S J, Thomas S G. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399–3414



[34]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103



[35]Samuel Y S, Cheung F, Lee J J, Ha M, Wei N E, Sze S-H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006, 47: 761–775

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[11] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[12] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[13] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[14] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[15] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!