作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1531-1539.doi: 10.3724/SP.J.1006.2014.01531
余琴鸯,尹恒,安利佳,李文利*
YU Qin-Yang,YIN Heng,AN Li-Jia,LI Wen-Li*
摘要:
CDPK是一类重要的钙信号感受蛋白和响应蛋白,在植物非生物胁迫应答方面具有重要的作用。为探究耐旱作物谷子CDPK在抗逆胁迫中的应答机制,本文利用RT-PCR技术从谷子幼苗cDNA中克隆到一个与逆境胁迫相关的CDPK基因,命名为SiCDPK1 (GenBank登录号为KC249975.1)。以拟南芥CDPK基因序列为查询序列,预测谷子基因组含有28个CDPK基因。其系统发育分析表明,谷子CDPK基因家族由4个亚类组成,其中SiCDPK1属于第II亚类,其全长1596 bp,编码531个氨基酸,预测蛋白分子量为59.5 kD,等电点pI为5.94,含有典型CDPK的保守结构。启动子调控区含有与多种逆境胁迫相关的调控元件。实时定量结果显示,SiCDPK1基因受PEG、ABA、高盐、自然干旱胁迫诱导表达。本试验为谷子抗逆应答机制的深入研究奠定了良好的理论基础。
[1]Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci, 2013, 18: 30–40[2]Rutschmann F, Stalder U, Piotrowski M, Oeckinq C, Schaller A. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol, 2002, 129: 156–168[3]Lu S X, Hrabak E M. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol, 2002, 128: 1008–1021[4]Martin M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 2000, 24: 429–435[5]Benetka W, Mehlmer N, Maurer-Stroh S, Sammer M, Koranda M, Neumüller R, Betschinqer J, Knoblich J A, Teiqe M, Eisenhaber F. Experimental testing of predicated myristoylation targets involved in asymmetric cell division and calcium-dependent signaling. Cell Cycle, 2008,7: 3709–3719[6]Chehab E W, Patharkar O R, Heqeman A D, Taybi T, Cushman J C. Autophosphorylation and subcellular localization dynamics of a salt- and water defict-induced calcium-dependent protein kinase from ice plant. Plant Physiol, 2004, 135: 1430–1446[7]Mehlmer N, Wurzinqer B, Stael S, Hofmann-Rodriques D, Csaszar E, Pfister B, Bayer R, Teiqe M. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J, 2010, 63: 484–498[8]Stael S, Bayer R G, Mehlmer N, Teiqe M. Protein N-acylation overrides differing targeting signals. FEBS Lett, 2011, 585: 517–522[9]Witte C P, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T. Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem, 2010, 285: 9740–9748[10]Christodoulou J, Malmendal A, Harper J F, Chazin W J. Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J Biol Chem, 2004, 279: 29092–29100[11]Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol, 2004, 55: 263–288[12] Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol, 2005, 6: 555–566[13]Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129: 469–485[14]Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol, 2005, 46: 356–366[15]Ray S, Aqarwal P, Arora R, Kapoor S, Tyaqi A K. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics, 2007, 278: 493–505[16]Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 66: 429–443[17]Ma P, Liu J, Yang X, Ma R. Genome-wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol, 2013, 169: 2111–2125[18]Myers C, Romanowsky S M, Barron Y D, Garq S, Azuse C L, Curran A, Davis R M, Hatton J, Harmon A C, Harper J F. Calcium-dependent protein kinase regulate polarized tip growth in pollen tubes. Plant J, 2009, 59: 528–539[19]Boudsocq M, Willmann M R, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S H, Sheen J. Differential innate immune signaling via Ca2+ sensor protein kinase. Nature, 2010, 464: 418–422[20]Zou J J, Wei F J, Wang C, Wu J J, Ratnasekera D, Liu W X, Wu W H. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol, 2010, 154: 1232–1243[21]Yu X C, Li M J, Gao G F, Feng H Z, Geng X Q, Peng C C, Zhu S Y, Wang X J, Shen Y Y, Zhang D P. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol, 2006, 140: 558–579[22]Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036[23]Dammann C, Ichida A, Honq B, Romanowsky S M, Hrabak E M, Harmon A C, Pickard B G, Harper J F. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol, 2003, 132: 1840–1848[24]Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005, 139: 1750–1761[25]Coca M, San Segundo B. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J, 2010, 63: 526–540[26]Harper J F, Sussman M R, Schaller G E, Putnam-Evans C, Charbonneau H, Harmon A C. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science, 1991, 252: 951–954[27]Romeis T, Ludwig A A, Martin R, Jones J D G. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J, 2001, 20: 5556–5567[28]Wan B, Lin Y, Mou T. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett, 2007, 581: 1179–1189[29]Kanchiswamy C N, Takahashi H, Quadro S, Maffei M E, Bossi S, Bertea C, Zebelo A S, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol, 2010, 10–97[30]Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell, 2008, 20: 3273–3288[31]Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca2+-dependent protein kinase is important for substrate recognition. Plant Cell, 2010, 22: 1592–1604[32]Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol, 2013, 163: 523–530[33]Hubbard K E, Sieqel R S, Valerio G, Brandt B, Schroeder J I. Absicsic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analysis. Ann Bot, 2012, 109: 5–17[34]Chenq S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinase. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129: 469–485[35]Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci, 2000, 5: 154–159[36]Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinase (CDPK). Biochim Biophy Acta, 2013, 1833: 1582–1589[37]Hrabak E M, Chen C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666–680[38]Ludwiq A A, Romeis T, Jones J D. CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot, 2004, 55: 181–188[39]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Rev Biotechnol, 2013, 33: 328–343[40]李志江. 谷子抗除草剂基因的发现及其应用. 基因组学与应用生物学, 2010, 29: 768–774Li Z J. Discovery and application of herbicide resisitant gene in foxtail millet. Genom Appl Biol, 2010, 29: 768–774 (in Chinese with English abstract)[41]瓮巧云, 宋晋辉, 张爱香. 谷子丝/苏氨酸蛋白激酶类抗病基因同源序列的克隆与分析. 河南农业科学, 2012, 41: 106–108Weng Q Y, Song J H, Zhang A X. Cloning and analysis of STK disease resistant gene analogs in millet. J Henan Agric Sci, 2012, 41: 106–108 (in Chinese with English abstract)[42]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子DnaJ蛋白基因的克隆. 华北农学报, 2007, 22(4): 9–13Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning of DnaJ-like protein gene from foxtail millet. Acta Agric Boreali-Sin, 2007, 22(4): 9–13 (in Chinese with English abstract)[43]杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究. 2011, 29(5): 69–74Yang X W, Hu Y G. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agric Res Arid Areas, 2011, 29(5): 69–74 (in Chinese with English abstract)[44]Zhang J P, Zheng J, Zhu Y, Guo J F, Wang G Y. Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. DNA Seq, 2007, 18: 138–144[45]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子3-磷酸甘油醛脱氢酶基因的克隆与结构分析. 华北农学报, 2009, 24(3): 10–14Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning and structure analysis of Foxtail Millet APDH gene. Acta Agric Boreali-Sin, 2009, 24(3): 10–14 (in Chinese with English abstract)[46]Peng Y L, Zhang J P, Cao G Y. Overexpression of a PLD alpha 1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep, 2010, 29: 793–802[47]赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360–367Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360–367 (in Chinese with English abstract)[48]张雁明, 王莉, 张彬, 王海岗, 彭锁堂, 李萍, 韩渊怀. 谷子ABF3基因对PEG胁迫的响应. 山西农业大学学报(自然科学版), 2013, 33(3): 191–196[49]李志江, 习现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16–22Li Z J, Xi X M. Research progress on molecular marker and functional genomic of foxtail millet (Setaria italic Beauv.). J Agric Sci Technol, 2009, 11(4): 16–22 (in Chinese with English abstract) |
[1] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[2] | 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885. |
[3] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[4] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[5] | 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148. |
[6] | 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089. |
[7] | 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846. |
[8] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
[9] | 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062. |
[10] | 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127. |
[11] | 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711. |
[12] | 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543. |
[13] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. |
[14] | 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30. |
[15] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
|