欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (09): 1531-1539.doi: 10.3724/SP.J.1006.2014.01531

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子逆境应答相关的钙依赖蛋白激酶基因SiCDPK1的克隆与表达

余琴鸯,尹恒,安利佳,李文利*   

  1. 大连理工大学生命科学与技术学院, 辽宁大连 116024
  • 收稿日期:2014-03-25 修回日期:2014-06-16 出版日期:2014-09-12 网络出版日期:2014-07-09
  • 通讯作者: 李文利, E-mail: biolwl@dlut.edu.cn
  • 基金资助:

    本研究由辽宁省科技厅农业攻关项目(2011208001)资助。

Cloning and Expression Analysis of a Calcium-Dependent Protein Kinase Gene SiCDPK1 in Setaria italica

YU Qin-Yang,YIN Heng,AN Li-Jia,LI Wen-Li*   

  1. School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
  • Received:2014-03-25 Revised:2014-06-16 Published:2014-09-12 Published online:2014-07-09
  • Contact: 李文利, E-mail: biolwl@dlut.edu.cn

摘要:

CDPK是一类重要的钙信号感受蛋白和响应蛋白,在植物非生物胁迫应答方面具有重要的作用。为探究耐旱作物谷子CDPK在抗逆胁迫中的应答机制,本文利用RT-PCR技术从谷子幼苗cDNA中克隆到一个与逆境胁迫相关的CDPK基因,命名为SiCDPK1 (GenBank登录号为KC249975.1)。以拟南芥CDPK基因序列为查询序列,预测谷子基因组含有28CDPK基因。其系统发育分析表明,谷子CDPK基因家族由4个亚类组成,其中SiCDPK1属于第II亚类,其全长1596 bp,编码531个氨基酸,预测蛋白分子量为59.5 kD,等电点pI5.94,含有典型CDPK的保守结构。启动子调控区含有与多种逆境胁迫相关的调控元件。实时定量结果显示,SiCDPK1基因受PEGABA、高盐、自然干旱胁迫诱导表达。本试验为谷子抗逆应答机制的深入研究奠定了良好的理论基础。

关键词: 谷子, CDPK, 逆境胁迫, 钙信号

Abstract:

CDPK (calcium-dependent protein kinase) is a kind of essential calcium sensors and calcium responders, which plays important roles in response to various abiotic stresses in plants. In this research, we cloned the abiotic stress response related CDPK gene with RT-PCR in Setaria italica, designated as SiCDPK1 (GenBank accession number KC249975.1). We predicted 28 CDPKs in the Setaria italica genome by using the known Arabidopsis CDPK sequences as query sequences. The phylogenetic analysis showed the SiCDPK gene family was divided into four subgroups, in which SiCDPK1 belongs to subgroup II. The ORF of SiCDPK1 contains 1596 bp, which encodes 531 amino acids. The predicted protein molecular weight is 59.5 kD and pI is 5.94. SiCDPK1 has conserved protein domains of CDPK. The regulatory element analysis of promoter in SiCDPK1 showed a lot of cis-acting elements associated with different abiotic stresses. The RT-PCR results showed that SiCDPK1 was induced by PEG, ABA, salinity and drought. The research on SiCDPK1 paves a way for unraveling the mechanism of abiotic stresses in plants.

Key words: Setaria italica, CDPK, Abiotic stress, Ca2+ signal

[1]Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends Plant Sci, 2013, 18: 30–40



[2]Rutschmann F, Stalder U, Piotrowski M, Oeckinq C, Schaller A. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol, 2002, 129: 156–168



[3]Lu S X, Hrabak E M. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol, 2002, 128: 1008–1021



[4]Martin M L, Busconi L. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J, 2000, 24: 429–435



[5]Benetka W, Mehlmer N, Maurer-Stroh S, Sammer M, Koranda M, Neumüller R, Betschinqer J, Knoblich J A, Teiqe M, Eisenhaber F. Experimental testing of predicated myristoylation targets involved in asymmetric cell division and calcium-dependent signaling. Cell Cycle, 2008,7: 3709–3719



[6]Chehab E W, Patharkar O R, Heqeman A D, Taybi T, Cushman J C. Autophosphorylation and subcellular localization dynamics of a salt- and water defict-induced calcium-dependent protein kinase from ice plant. Plant Physiol, 2004, 135: 1430–1446



[7]Mehlmer N, Wurzinqer B, Stael S, Hofmann-Rodriques D, Csaszar E, Pfister B, Bayer R, Teiqe M. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J, 2010, 63: 484–498



[8]Stael S, Bayer R G, Mehlmer N, Teiqe M. Protein N-acylation overrides differing targeting signals. FEBS Lett, 2011, 585: 517–522



[9]Witte C P, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T. Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem, 2010, 285: 9740–9748



[10]Christodoulou J, Malmendal A, Harper J F, Chazin W J. Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. J Biol Chem, 2004, 279: 29092–29100



[11]Harper J F, Breton G, Harmon A. Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol, 2004, 55: 263–288



[12] Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol, 2005, 6: 555–566



[13]Cheng S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129: 469–485



[14]Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol, 2005, 46: 356–366



[15]Ray S, Aqarwal P, Arora R, Kapoor S, Tyaqi A K. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics, 2007, 278: 493–505



[16]Li A L, Zhu Y F, Tan X M, Wang X, Wei B, Guo H Z, Zhang Z L, Chen X B, Zhao G Y, Kong X Y, Jia J Z, Mao L. Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol, 2008, 66: 429–443



[17]Ma P, Liu J, Yang X, Ma R. Genome-wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol, 2013, 169: 2111–2125



[18]Myers C, Romanowsky S M, Barron Y D, Garq S, Azuse C L, Curran A, Davis R M, Hatton J, Harmon A C, Harper J F. Calcium-dependent protein kinase regulate polarized tip growth in pollen tubes. Plant J, 2009, 59: 528–539



[19]Boudsocq M, Willmann M R, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S H, Sheen J. Differential innate immune signaling via Ca2+ sensor protein kinase. Nature, 2010, 464: 418–422



[20]Zou J J, Wei F J, Wang C, Wu J J, Ratnasekera D, Liu W X, Wu W H. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol, 2010, 154: 1232–1243



[21]Yu X C, Li M J, Gao G F, Feng H Z, Geng X Q, Peng C C, Zhu S Y, Wang X J, Shen Y Y, Zhang D P. Abscisic acid stimulates a calcium-dependent protein kinase in grape berry. Plant Physiol, 2006, 140: 558–579



[22]Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036



[23]Dammann C, Ichida A, Honq B, Romanowsky S M, Hrabak E M, Harmon A C, Pickard B G, Harper J F. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis. Plant Physiol, 2003, 132: 1840–1848



[24]Choi H I, Park H J, Park J H, Kim S, Im M Y, Seo H H, Kim Y W, Hwang I, Kim S Y. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol, 2005, 139: 1750–1761



[25]Coca M, San Segundo B. AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J, 2010, 63: 526–540



[26]Harper J F, Sussman M R, Schaller G E, Putnam-Evans C, Charbonneau H, Harmon A C. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science, 1991, 252: 951–954



[27]Romeis T, Ludwig A A, Martin R, Jones J D G. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J, 2001, 20: 5556–5567



[28]Wan B, Lin Y, Mou T. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Lett, 2007, 581: 1179–1189



[29]Kanchiswamy C N, Takahashi H, Quadro S, Maffei M E, Bossi S, Bertea C, Zebelo A S, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol, 2010, 10–97



[30]Ishida S, Yuasa T, Nakata M, Takahashi Y. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor REPRESSION OF SHOOT GROWTH in response to gibberellins. Plant Cell, 2008, 20: 3273–3288



[31]Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca2+-dependent protein kinase is important for substrate recognition. Plant Cell, 2010, 22: 1592–1604



[32]Schulz P, Herde M, Romeis T. Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol, 2013, 163: 523–530



[33]Hubbard K E, Sieqel R S, Valerio G, Brandt B, Schroeder J I. Absicsic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus-response analysis. Ann Bot, 2012, 109: 5–17



[34]Chenq S H, Willmann M R, Chen H C, Sheen J. Calcium signaling through protein kinase. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol, 2002, 129: 469–485



[35]Harmon A C, Gribskov M, Harper J F. CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci, 2000, 5: 154–159



[36]Liese A, Romeis T. Biochemical regulation of in vivo function of plant calcium-dependent protein kinase (CDPK). Biochim Biophy Acta, 2013, 1833: 1582–1589



[37]Hrabak E M, Chen C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666–680



[38]Ludwiq A A, Romeis T, Jones J D. CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot, 2004, 55: 181–188



[39]Lata C, Gupta S, Prasad M. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Critical Rev Biotechnol, 2013, 33: 328–343



[40]李志江. 谷子抗除草剂基因的发现及其应用. 基因组学与应用生物学, 2010, 29: 768–774



Li Z J. Discovery and application of herbicide resisitant gene in foxtail millet. Genom Appl Biol, 2010, 29: 768–774 (in Chinese with English abstract)



[41]瓮巧云, 宋晋辉, 张爱香. 谷子丝/苏氨酸蛋白激酶类抗病基因同源序列的克隆与分析. 河南农业科学, 2012, 41: 106–108



Weng Q Y, Song J H, Zhang A X. Cloning and analysis of STK disease resistant gene analogs in millet. J Henan Agric Sci, 2012, 41: 106–108 (in Chinese with English abstract)



[42]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子DnaJ蛋白基因的克隆. 华北农学报, 2007, 22(4): 9–13



Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning of DnaJ-like protein gene from foxtail millet. Acta Agric Boreali-Sin, 2007, 22(4): 9–13 (in Chinese with English abstract)



[43]杨希文, 胡银岗. 谷子DREB转录因子基因的克隆及其在干旱胁迫下的表达模式分析. 干旱地区农业研究. 2011, 29(5): 69–74



Yang X W, Hu Y G. Cloning of a DREB gene from foxtail millet (Setaria italica L.) and its expression during drought stress. Agric Res Arid Areas, 2011, 29(5): 69–74 (in Chinese with English abstract)



[44]Zhang J P, Zheng J, Zhu Y, Guo J F, Wang G Y. Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. DNA Seq, 2007, 18: 138–144



[45]崔润丽, 智慧, 王永芳, 李伟, 李海权, 黄占景, 刁现民. 谷子3-磷酸甘油醛脱氢酶基因的克隆与结构分析. 华北农学报, 2009, 24(3): 10–14



Cui R L, Zhi H, Wang Y F, Li W, Li H Q, Huang Z J, Diao X M. Cloning and structure analysis of Foxtail Millet APDH gene. Acta Agric Boreali-Sin, 2009, 24(3): 10–14 (in Chinese with English abstract)



[46]Peng Y L, Zhang J P, Cao G Y. Overexpression of a PLD alpha 1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep, 2010, 29: 793–802



[47]赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民. 谷子CBL基因鉴定及其在干旱、高盐胁迫下的表达分析. 作物学报, 2013, 39: 360–367



Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M. Identification of CBL genes from foxtail millet (Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013, 39: 360–367 (in Chinese with English abstract)



[48]张雁明, 王莉, 张彬, 王海岗, 彭锁堂, 李萍, 韩渊怀. 谷子ABF3基因对PEG胁迫的响应. 山西农业大学学报(自然科学版), 2013, 33(3): 191–196



[49]李志江, 习现民. 谷子分子标记与功能基因组研究进展. 中国农业科技导报, 2009, 11(4): 16–22



Li Z J, Xi X M. Research progress on molecular marker and functional genomic of foxtail millet (Setaria italic Beauv.). J Agric Sci Technol, 2009, 11(4): 16–22 (in Chinese with English abstract)

[1] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[2] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[3] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 李文兰, 李文才, 孙琦, 于彦丽, 赵勐, 鲁守平, 李艳娇, 孟昭东. 玉米生长素响应因子家族基因的表达模式分析[J]. 作物学报, 2021, 47(6): 1138-1148.
[6] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[7] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[8] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[9] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[10] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析[J]. 作物学报, 2020, 46(7): 1120-1127.
[11] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
[12] 梁思维,姜昊梁,翟立红,万小荣,李小琴,蒋锋,孙伟. 玉米HD-ZIP I亚家族基因鉴定及表达分析[J]. 作物学报, 2020, 46(4): 532-543.
[13] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[14] 马金姣,兰金苹,张彤,陈悦,郭亚璐,刘玉晴,燕高伟,魏健,窦世娟,杨明,李莉云,刘国振. 过表达OsMPK17激酶蛋白质增强了水稻的耐旱性[J]. 作物学报, 2020, 46(01): 20-30.
[15] 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!