欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1707-1714.doi: 10.3724/SP.J.1006.2010.01707

• 耕作栽培·生理生化 • 上一篇    下一篇

播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系

赵新华1,2,束红梅1,3,王友华1,陈兵林1,周治国1,*   

  1. 1南京农业大学/农业部南方作物生理生态重点开放实验室,江苏南京210095;2中国农业科学院棉花研究所,河南安阳455112;3江苏省农业科学院农业生物技术研究所,江苏南京210014
  • 收稿日期:2010-04-21 修回日期:2010-06-28 出版日期:2010-10-12 网络出版日期:2010-08-10
  • 通讯作者: 周治国, E-mail: giscott@njau.edu.cn, Tel: 025-84396813
  • 基金资助:

    本研究由国家自然科学基金项目(30771279)和高等学校博士点基金项目(200803070017)资助。

Effects of Sowing Date on Accumulation and Distribution of Biomass and Nitrogen in Cotton Bolls

ZHAO Xin-Hua12,SHU  Hong-Mei13,WANG  You-Hua1,CHEN  Bing-Lin1,ZHOU  Zhi-Guo1*   

  1. 1Key Laboratory of Crop Growth regulation,Ministry of Agriculture,Nanjing Agricultural University,Nanjing 210095,China;2 Cotton Research Institute,Chinese Academy of Agricultural Science,Anyang 455112,China;3Institute of Agricultural Biotechnology,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China
  • Received:2010-04-21 Revised:2010-06-28 Published:2010-10-12 Published online:2010-08-10
  • Contact: ZHOU Zhi-Guo,E-mail:giscott@njau.edu.cn,Tel:025-84396813

摘要: 试验于2005年在江苏徐州(117°11′E, 34°15′N)、2007年在河南安阳(114°13′E, 36°04′N)进行, 设置正常播期(4月25日)和晚播(5月25日)两个播期,研究播期对棉铃生物量和氮累积与分配的影响及其与棉铃品质的关系。结果表明, 晚播显著影响棉铃(铃壳、棉籽、纤维)生物量和氮的累积与分配,进而影响铃重、棉纤维和棉籽品质形成。与正常播期比较,晚播条件下有以下变化。(1)棉株中部果枝棉铃铃期日均温下降,2005、2007年分别由24.8℃降至20.8℃、24.1℃降至19.4℃。(2)铃壳生物量升高、氮累积量下降;棉籽、棉纤维生物量和氮的快速累积起始时间推迟,累积速率峰值降低且出现时间晚,导致棉籽和棉纤维生物量和氮的累积量降低;棉纤维氮累积速率峰值出现时间早于生物量,棉籽则相反。(3)铃壳生物量和氮的累积量所占整个棉铃中的比率上升,棉籽生物量和氮的分配系数降低;棉纤维生物量的分配系数降低,但棉纤维氮的分配系数变化较小。(4)铃重、棉纤维比强度和棉籽蛋白质、油含量显著降低。综上所述,就棉花中部果枝棉铃而言,晚播条件下,铃期日均温降低导致光合产物和氮素向纤维和棉籽中的分配及铃壳的再转运过程受阻,棉籽和纤维的生物量和氮累积量降低,最终铃重降低、棉纤维和棉籽品质变劣。

关键词: 棉花, 播期, 铃期日均温, 生物量, 氮累积量, 棉铃品质

Abstract: Cotton has an indeterminate growth habit, the duration of growth, particularly cotton boll development period, is restricted by environmental condition. To investigate the response of the accumulation and distribution of biomass and nitrogen in cotton bolls to environmental condition and its relationship with fiber and seed quality characteristics, we carried out field experiments in Xuzhou (117°11′E, 34°15′N) and Anyang (114°13′E, 36°04′N). Using two cotton cultivars, Kemian 1 and NuCOTN, grown in the field with two sowing dates (25-Apr and 25-May) treatments. The results showed that, mean daily temperature during boll development stage in the middle fruiting branch position for the normal sowing date (25-Apr) treatment in the two sites was 24.8℃ and 24.1℃ respectively, while only 20.8℃ and 19.4℃ for the late sowing date (25-May) treatment. And when mean daily temperature was lower than 20.8℃cotton shell biomass increased while its nitrogen accumulation amount decreased in the late sowing date treatment. And for the biomass and nitrogen accumulation in fiber and cotton seed development, the start time of the rapid accumulation stage was later, the maximal rate was lower and its emergence time was later, resulting in the decrease of biomass and nitrogen accumulation amount. The maximal rate of nitrogen accumulation appeared earlier than that of biomass accumulation in fiber and that was opposite in cotton seed development. Under low temperature, biomass and nitrogen distribution indices increased in cotton shell while decreased in cotton seed, and no significant changes for nitrogen distribution indices in fiber. Boll weight, fiber strength and seed protein/oil content were also decreased in lower temperature condition. These results indicated that low temperature condition (mean daily temperature below 20.8℃) inhibits the transportation of nitrogen and photosyntheates products from plants to bolls (shell, seed and fiber), which decreases the accumulation amount of biomass and nitrogen in seed and fiber, leading to the reduction of their qualities.

Key words: Cotton boll, Sowing date, Mean daily temperature during boll development stage, Biomass, Nitrogen accumulation amount, Cotton boll quality

[1]Huang J-Q(黄骏麒). China Cotton Farming (中国棉作学). Beijing: China Agricultural Sci & Tech Press, 1998. pp 237–239 (in Chinese)
[2]Liu Y-X(刘毓湘). Contemporary World Cotton (当代世界棉业). Beijing: China Agriculture Press, 1995. pp 257–266 (in Chinese)
[3]Leffler H R. Development of cotton fruit accumulation and distribution of dry matter. Agron J, 1976, 68: 855–857
[4]Chen B-L(陈兵林), Cao W-X(曹卫星), Zhou Z-G(周治国). Simulation and validation of dry matter accumulation and distribution of cotton bolls at different flowering stages. Sci Agric Sin (中国农业科学), 2006, 39(3): 487–493 (in Chinese with English abstract)
[5]Zhou K-J(周可金), Jiang H-W(江厚旺), Wu N(吴宁), Zhang W(张韪), Xia J(夏静), Li A-Q(李爱青). Studies on the dynamics of dry matter accumulation of cotton boll at different flower stages. Cotton Sci (棉花学报), 1996, 8(3): 145–150 (in Chinese with English abstract)
[6]Shan S-H(单世华), Sun X-Z(孙学振), Zhou Z-G(周治国), Shi P(施培). The effect of temperature on the dynamic changes of cotton fiber dry matter accumulation. J Shandong Agric Univ (Nat Sci)(山东农业大学学报·自然科学版), 2001, 32(1): 6–10 (in Chinese with English abstract)
[7]Hu H-B(胡宏标), Zhang W-J(张文静), Chen B-L(陈兵林), Wang Y-H(王友华), Shu H-M(束红梅), Zhou Z-G(周治国). Variability of C/N ratio in cotton boll subtending leaf and its relationship to cotton boll dry matter accumulation and distribution. Acta Agron Sin (作物学报), 2008, 34(2): 254–260 (in Chinese with English abstract)
[8]Ma R-H(马溶慧), Xu N-Y(许乃银), Zhang C-X(张传喜), Li W-F(李文峰), Feng Y(冯营), Wang Y-H(王友华), Zhou Z-G(周治国), Meng Y-L(孟亚利). Effects of nitrogen rates on dry matter accumulation and distribution of bolls and fiber quality characteristics in cotton. Cotton Sci (棉花学报), 2009, 21(2): 115–120 (in Chinese with English abstract)
[9]Shan S-H(单世华), Sun X-Z(孙学振), Zhou Z-G(周治国), Shi P(施培). Temperature effects on fiber quality of cotton. Acta   Agric Boreali Sin (华北农学报), 2000, 15(4): 120–125 (in Chinese with English abstract)
[10]Shu H-M(束红梅), Zhao X-H(赵新华), Zhou Z-G(周治国), Zheng M(郑密), Wang Y-H(王友华). Physiological mechanisms of variation in temperature-sensitivity of cotton fiber strength formation between two cotton cultivars. Sci Agric Sin (中国农业科学), 2009, 42(7): 2332–2341 (in Chinese with English abstract)
[11]Haigler C H, Rao N R, Roberts E M, Huang J Y, Upchurch D R, Trolinder N L. Cultured ovules as models for cotton fiber deve-  lopment under low temperatures. Plant Physiol, 1991, 95: 88–96
[12]Li W-F(李文峰), Meng Y-L(孟亚利), Chen B-L(陈兵林), Wang Y-H(王友华), Zhou Z-G(周治国). Effects of climatic factors on fat and total protein contents in cottonseeds. Acta Ecolog Sin (生态学报), 2009, 29(4): 1832–1839 (in Chinese with English abstract)
[13]Jiang G-H(蒋光华), Meng Y-L(孟亚利), Chen B-L(陈兵林), Bian H-Y(卞海云), Zhou Z-G(周治国). Effects of low temperature on physiological mechanisms of cotton fiber strength forming process. J Plant Ecol (植物生态学报), 2006, 30(2): 335–343 (in Chinese with English abstract)
[14]Shu H, Zhou Z, Xu N, Wang Y, Zheng M. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Eur J Agron, 2009, 31: 61–68
[15]Zhou Z-G(周治国), Xu Y-Z(许玉璋), Xu X(许萱). Effects of temperature upon the development of cotton seeds. Acta Univ Agric Boreali-Occident (西北农业大学学报), 1992, 20(2): 73–78 (in Chinese with English abstract)
[16]Li W, Meng Y, Xu N, Zhou Z, Fok M. Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crops Res, 2009, 112: 131–140
[17]Feil B, Moser S B, Jampatong S, Stamp P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci, 2005, 45: 516–523
[18]Luque de Castro M D, Garcia-ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chimica Acta, 1998, 369: 1–10
[19]Dong H Z, Li W J, Tang W, Li Z, Zhang D M, Niu Y H. Yield, quality and leaf senescence of cotton grown at varying sowing dates and plant densities in the Yellow River Valley of China. Field Crops Res, 2006, 98: 106–115
[1] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[2] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[3] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 李鑫格, 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 播期播量及施氮量对冬小麦生长及光谱指标的影响[J]. 作物学报, 2022, 48(4): 975-987.
[6] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[7] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[8] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[9] 张加康, 李斐, 史树德, 杨海波. 内蒙古地区甜菜临界氮浓度稀释模型的构建及应用[J]. 作物学报, 2022, 48(2): 488-496.
[10] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[11] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[12] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[13] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[14] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[15] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!