欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (10): 1769-1776.doi: 10.3724/SP.J.1006.2010.01769

• 耕作栽培·生理生化 • 上一篇    下一篇

不同品质类型小麦籽粒麦谷蛋白亚基及谷蛋白聚合体形成和累积动态

高文川,马猛,王爱娜,赵惠贤   

  1. 西北农林科技大学生命科学院,陕西杨凌712100
  • 收稿日期:2010-03-09 修回日期:2010-05-29 出版日期:2010-10-12 网络出版日期:2010-08-04
  • 通讯作者: 赵惠贤, E-mail: hxzhao212@yahoo.com.cn, Tel: 029-87062928
  • 基金资助:

    本研究由国家自然科学基金项目(30871578)和国家转基因生物新品种培育科技重大专项(2008ZX08002-004)资助.

Accumulation Dynamics of Glutenin Subunits and Glutenin Polymer in Wheat Cultivars with Different Qualities during Grain Development

GAO Wen-Chuan,MA Meng,WANG Ai-Na,ZHAO Hui-Xian*   

  1. College of Life Science, Northwest A&F University, Yangling 712100, China
  • Received:2010-03-09 Revised:2010-05-29 Published:2010-10-12 Published online:2010-08-04
  • Contact: ZHAO Hui-Xian,E-mail:hxzhao212@yahoo.com.cn,Tel:029-87062928

摘要: 选用高分子量麦谷蛋白亚基(HMW-GS)组成不同的3个强筋和4个弱筋小麦品种,研究了其籽粒发育过程中麦谷蛋白亚基、谷蛋白聚合体的形成和累积动态。结果表明,强筋小麦籽粒HMW-GS和B区低分子量麦谷蛋白亚基(LMW-GS)从花后9~12 d天开始表达;而弱筋小麦从花后12~15 d开始表达,即强筋小麦麦谷蛋白亚基开始形成时间早于弱筋小麦。各品种的HMW-GS一旦形成,其累积速度较快,花后27 d基本达到稳定值,之后维持稳定量;LMW-GS形成后,累积较慢,直到花后30 d左右达到稳定量。3个强筋小麦品种籽粒灌浆期谷蛋白总聚合体百分含量(TGP%)和谷蛋白大聚合体百分含量(GMP%)累积动态趋势基本一致,即在花后12~30 d一直持续增加,花后30 d至成熟达到最大值并保持稳定水平。4个弱筋小麦TGP%和GMP%累积动态均表现为在花后12~24 d (灌浆早中期)形成和持续累积,花后24 d至成熟逐渐降低。麦谷蛋白亚基表达模式以及谷蛋白聚合体累积动态的差异可能是导致小麦强筋或弱筋品质形成的关键。

关键词: 普通小麦, 麦谷蛋白亚基, 谷蛋白聚合体, 累积动态

Abstract: The quality of wheat (Triticum aestivum L.) flour for end use depends on the visco-elastic properties of dough, which are influenced by quantity and quality of the gluten-forming storage proteins of wheat endosperm. Gliadin and glutenin are major components of gluten protein. Dough strength is determined by the capacity of glutenin subunits to form large polymers with different sizes, and the quantity and composition of glutenin polymer influence wheat dough properties. To date, there are few reports on accumulation dynamics of glutenin subunits and glutenin polymer in wheat cultivars with different qualities during grain development. In this study, three strong-gluten and four weak-gluten wheat cultivars with different HMW-GS compositions were used to analyze accumulation dynamics of glutenin subunits and glutenin polymer during grain development. The results showed that HMW-GS and LMW-GS of strong-gluten cultivars initially expressed at 9–12 d after flowering, which were earlier than those of weak-gluten cultivars (12–15 d after flowering). Expression time of glutenin subunits in wheat cultivars with strong-gluten was a little earlier than that in wheat cultivars with weak-gluten. The quantity of HMW-GS in each cultivar rapidly increased during the early period of grain-filling, and kept stable from 27 d after flowering to maturity, however, the quantity of LMW-GS accumulated slowly during the grain-filling period, reaching stable level at 30 d after flowering. In wheat cultivars with strong-gluten, TGP (total glutenin polymer) % and GMP (glutenin macropolymer) % rapidly increased at 12–21 d after flowering and slowly increased during 21–30 d after flowering, and then maintained at the stable level from 30 d after flowering to maturity. However, in weak-gluten cultivars, TGP% and GMP% rapidly increased at 12–24 d after flowing and decreased continuously from 27 d after flowering to maturity. The differences of expression profile and accumulation of glutenin subunits and glutenin polymer between wheat cultivars with strong-gluten and weak-gluten may be the key factors affecting strong-gluten or weak-gluten formation of wheat cultivars.

Key words: Triticum aestivum L., Glutenin subunit, Glutenin polymeric protein, Accumulation dynamics

[1]Lin Z-J(林作楫). Wheat Quality Improvement and Food Pro-  cessing (食品加工与小麦品质改良). Beijing: China Agriculture Press, 1994 (in Chinese)
[2]Morrison W R. Lipids in wheat: chemistry and technology. In: Pomeranz Y ed. Wheat: Chemistry and Technology. Washington DC: American Association of Cereal Chemist, 1988. pp 373-439
[3]Liu G-T(刘广田), Li B-Y(李保云). The inheritance and improvement of quality traits in common wheat. J Agric Biotechnol (农业生物技术学报), 2000, 8(4): 307-314 (in Chinese with English abstract)
[4]Osborne T B. The Proteins of the Wheat Kernel. Publication 84. Washington DC: Carnegie Institution of Washington, 1907. pp 6-16
[5]Che Y-H(车永和), Ma X-G(马晓岗). Advances in the study on the protein quality in wheat. Qinghai Agric Sci Technol (青海农业科技), 2001, (4): 23-25 (in Chinese)
[6]Gupta R B, Shepherd K W. Two-step one-dimensional SDS- PAGE analysis of LMW subunits of glutelin. Theor Appl Genet, 1990, 80: 183-187
[7]Shewry P R, Hedgcoth B J, Tatham A S. The high molecular weight subunits of wheat barley and rye genetic molecular bio-  logy chemistry and role in wheat gluten structure and functiona- lity. Plant Mol Cell Biol, 1989, 6: 163-219
[8]Shepherd K W. Genetics of wheat endosperm protein. In: Proceedings of the 7th Wheat Genetic Symposium, England Cambridge, 1988. pp 919-931
[9]Southan W, Macritchie F. Molecular weight distribution of wheat protein. Cereal Chem, 1999, 76: 827-836
[10]Weegels P L, Flissebaalje T, Hamer R J. Factors affecting the extractability of the glutenin macropolymer. Cereal Chem, 1994, 71: 308-309
[11]Singh N K, Donovan G R, Batey I L, Macritchie F. Use of sonication and size-exclusion high-performance liquid chromatography in the study of wheat flour proteins: I. Dissolution of total proteins in the absence of reducing agents. Cereal Chem, 1990, 67: 150-161
[12]Gupta R B, Khan K, MacRitchi F. Biochemical basis of flour properties in bread wheats: I. Effects of variation in quality and size distribution of polymeric protein. J Cereal Sci, 1993, 18: 23-41
[13]Zhao H-X(赵惠贤), Hu S-W(胡胜武), Ji W-Q(吉万全), Xue X-Z(薛秀庄), Guo A-G(郭霭光), Daryl M. Study on relationship between the size distribution of glutenin polymeric protein and wheat flour mixing properties. Sci Agric Sin (中国农业科学), 2001, 34(5): 465-468 (in Chinese with English abstract)
[14]Zhao H-X(赵会贤), Xue X-Z(薛秀庄), Daryl Mares, Feng J-L(冯军礼). Effect of allelic variation of glutenin subunit loci Glu-1 and Glu-3 on wheat quality. Acta Agron Sin (作物学报), 1997, 23(6): 646-654 (in Chinese with English abstract)
[15]Yue H-W(岳鸿伟), Tan W-N(谭维娜), Jiang D(姜东), Dai T-B(戴廷波), Jing Q(荆奇), Cao W-X(曹卫星). Effects of post anthesis drought and waterlogging on contents of high molecular weight glutenin subunits and glutenin macropolymer in wheat grain. Acta Agron Sin (作物学报), 2007, 33(11): 1845-1849 (in Chinese with English abstract)
[16]Bo Y(伯云), Li H-W(李华伟), Mou H-R(牟会荣), Cai J(蔡剑), Zhou Q(周琴), Dai T-B(戴廷波), Cao W-X(曹卫星), Jiang D(姜东). Effects of shading from jointing stage to maturity stage on high molecular weight glutenin subunits accumulation and glutenin macropolymer content in wheat grain. Sci Agric Sin (中国农业科学), 2009, 42(10): 3451-3458 (in Chinese with English abstract)
[17]Zhang H-J(张宏纪). Study on the glutenin macropolymer of spring wheat with same HMW-GS. Chin Agric Sci Bull (中国农学通报), 2008, 24(1): 172-175 (in Chinese with English abstract)
[18]Wei Y-M(魏益民). The protein components of wheat grain. Seed (种子), 1988, (2): 1-3 (in Chinese)
[19]Wang X-Z(王宪泽), Tian J-C(田纪春), Zhang Z-Y(张忠义). Study on accumulation laws of the wheat grain protein and its composition. J Shandong Agric Univ (山东农业大学学报), 1994, 25(4): 394-398 (in Chinese with English abstract)
[20]Deng Z-Y(邓志英), Tian J-C(田纪春), Liu X-P(刘现鹏). Accumulation regularity of protein components in wheat cultivars with different HMW-GS. Acta Agron Sin (作物学报), 2004, 30(5): 481-486 (in Chinese with English abstract)
[21]Zhao G-C(赵广才). Studies on the dynamic change of protein contents in developing grains of different species and types of wheat. Acta Agron Sin (作物学报), 1992, 18(3): 205-212 (in Chinese with English abstract)
[22]Zhu J, Khan K. Characterization of monomeric and glutenin polymeric proteins of hard red spring wheat during grain development by multistacking SDS-PAGE and capillary zone electrophoresis. Cereal Chem, 1999, 76: 261-269
[23]Naeem H A, Macritchie F. Polymerization of glutenin during grain development in near-isogenic wheat lines differing at Glu-D1 and Glu-B1 in greenhouse and field. J Cereal Sci, 2005, 41: 7-12
[24]Wang Y-P(王银萍), Li Y-C(李勇超), Wei Y-Y(魏燕燕), Liu L-L(刘林丽), Zhao H-X(赵惠贤), Guo A-G(郭蔼光). Compositions of high molecular weight glutenin subunits (HMW-GS) and their genetic diversity in wheat cultivars from Huang-Huai wheat region. J Triticeae Crops (麦类作物学报), 2006, 26(5): 69-73 (in Chinese with English abstract)
[25]Xiong Y-Y(熊玉英), Zhang C-Q(张春庆), Li Z-C(李中存), Gao R-Q(高荣岐), Yin Y-P(尹燕枰). A method of determing subunit quantitation of wheat glutenin macropolymer. Acta Agron Sin (作物学报), 2005, 31(3): 374-380 (in Chinese with English abstract)
[26]Gupta R B, MacRitchie F. A rapid one-step one-dimensional SDS-PAGE procedure for analysis of subunit composition of glutenin in wheat. J Cereal Sci, 1991, 14: 105-109
[27]Payne P I, Lawrence G J. Catalogue of alleles for the complex loci, Glu-A1, Glu-B1, and Glu-D1, which code for high-     molecular weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983, 11: 29-35
[28]Zhao H-X(赵惠贤), Duan H(段惠), Liang L(梁亮), Guo A-G(郭霭光). Study on glutenin maropolymers content and its subunit constituents. Acta Bot Boreal-Occident Sin (西北植物学报), 2003, 23(5): 755-758 (in Chinese with English abstract)
[29]Gong P-B(巩普遍), Zhao H-X(赵会贤), Guo A-G(郭蔼光). Periodical expression of high molecular weight gluten in subunit gene in developing wheat seeds. J Northwest Sci-Tech Univ Agric For (西北农林科技大学学报), 2002, 30(1): 115-118 (in Chinese with English abstract)
[30]Deng Z-Y(邓志英), Tian J-C(田纪春), Zhang Y-X(张永祥), Wang Y-X(王延训), Sun G-X(孙国兴), Sheng F(盛峰). Formation time and accumulation intensity of HMW-GS and LMW-GS and the relationship with SDS-sedimentation volume in winter wheat. Acta Agron Sin (作物学报), 2005, 31(3): 308-315 (in Chinese with English abstract)
[31]Huang Y(黄禹), Yan B-J(晏本菊), Ren Z-L(任正隆). Accumulation regularity of protein components in wheat cultivars with different varieties. Southwest China J Agric Sci (西南农业学报), 2007, 20(4): 591-596 (in Chinese with English abstract)
[32]Zhang P-P(张平平), Ma H-X(马鸿翔), Yao J-B(姚金保), He Z-H(何中虎). Effect of allelic variation and expression quantity at Glu-1 loci on size distribution of glutenin polymer in common wheat. Acta Agron Sin (作物学报), 2009, 35(9): 1606-1612 (in Chinese with English abstract)
[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[5] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[8] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[9] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[10] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[11] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[12] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[13] 张星星,王召军,杨玉双,王道文,郑文明,董振营. 利用HMW-GS全缺失突变体快速构建Glu-1位点近等渗入系[J]. 作物学报, 2016, 42(08): 1247-1252.
[14] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[15] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!