欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (11): 1883-1890.doi: 10.3724/SP.J.1006.2010.01883

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

赤霉素诱导甘蔗节间伸长基因的cDNA-SCoT差异表达分析

吴建明1, 2, 3,李杨瑞2,3, 4,*,王爱勤3,杨柳2, 3,杨丽涛3   

  1. 1 广西农业科学院经济作物研究所,广西南宁 530004;2 广西作物遗传改良生物技术重点开发实验室,广西南宁 530007;3广西大学广西亚热带生物资源保护利用重点实验室,广西南宁 530007;4中国农业科学院甘蔗研究中心,广西南宁 530007
  • 收稿日期:2010-01-04 修回日期:2010-06-28 出版日期:2010-11-12 网络出版日期:2010-08-30
  • 通讯作者: 李杨瑞, E-mail: liyr@gxaas.net
  • 基金资助:

    本研究由国家科技支撑计划项目(2007BAD30B03),广西科技攻关重点项目(桂科攻0782004-3),广西科技攻关项目(桂科能0630006-5F和桂科能0815011)和现代农业产业技术体系建设专项资金(nycytx-024-01-15)资助。

Differential Expression of Genes in Gibberellin-Induced stalk elongation of Sugarcane Analyzed with cDNA-ScoT

WU Jian-Ming1, 2, 3,LI Yang-Rui2, 3, 4 *,WANG Ai-Qin3,YANG Liu2, 3,YANG Li-Tao3   

  1. 1 Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; 2 Guangxi Crop Genetic Improvement and Biotechnology Lab, Nanning 530007, China; 3 Guangxi Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi University, Nanning 530004, China; 4 Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning 530007, China
  • Received:2010-01-04 Revised:2010-06-28 Published:2010-11-12 Published online:2010-08-30
  • Contact: LI Yang-Rui,E-mail:liyr@gxaas.net

摘要: 以甘蔗ROC22为材料,在伸长初期进行叶面喷施200 mg L–1浓度的赤霉素为处理,以喷施清水为对照,在不同时间取幼茎样品,用cDNA-SCoT进行基因差异表达分析。结果表明,通过46条引物筛选了约700个cDNA片段,获得差异片段30个。有18个基因片段受赤霉素上调而12个基因片段下调;其中16个TDFs序列和NCBI数据库中已录入的基因具有较高的相似性,按照其功能可分为6类,即能量与代谢相关基因(占总数的20.0%)、未知功能蛋白(占总数的20.0%)、未知基因(占总数的46.7%)、信号传导相关基因(占总数的6.7%)和转录因子相关基因(占总数的3.3%);细胞凋亡基因(3.3%)。这说明利用SCoT方法可以进行蔗茎基因差异表达研究,分离到的一些差异片段可能是与甘蔗节间伸长相关的基因。

关键词: 甘蔗, cDNA-SCoT, 差异表达, 赤霉素

Abstract: The present study was conducted to investigate the molecular mechanisms of gibberellin-induced stalk internodes elongation in sugarcane. Using sugarcane variety ROC22, the plant leaves were treated with spraying gibberellic acid (GA3) at 200 mg L–1 at early elongation stage, and spraying water as a control. Samples of young stalks were taken and the differentially expressed genes were analyzed with cDNA-SCoT technique. The results showed that 30 fragments of differentially expressed genes were obtained by screening 700 cDNA fragments with 46 single primers. The expressions of 18 genes were up-regulated, and 12 genes down-regulated by GA3 induction, and the sequences of 16 TDFs showed high similarity to the registered genes in the NCBI database. These genes were divided into six categories by functional analysis, including energy and metabolism-related genes (accounting for 20.0%), unknown functional proteins (accounting for 20.0%), unknown genes (accounting for 46.7%), signal transduction-related genes (accounting for 6.7%), transcription factor-related genes (accounting for 3.3%), and cell apoptosis (accounting for 3.3%). This suggested that the differential expression of genes in the stalks can be analyzed with SCoT technique, and some fragments may be related to the stalk elongation of surgarcane.

Key words: Gibberellin, Sugarcane, cDNA-SCoT, Differential expression

[1]Hironori T, Mut Y A, Makoto M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 2002, 14: 57–70
[2]Moore P H, Buren L L. Gibberellin studies with sugarcane: I. Cultivar differences in growth responses to gibberellic acid. Crop Sci, 1978, 18: 443–446
[3]Buren L L, Moore P H, Yamasaki Y. Gibberellin studies with sugarcane: II. Hand-sampled field trials. Crop Sci, 1979, 19: 425–428
[4]Most B H, Vlitos A J. Gibberellins of sugarcane. Plant Physioogyl, 1966, 41: 1090–1094
[5]Reid J B, Botwright A N, Smith J J, O’Neill D P, Kerckhoffs L H J. Control of gibberellin levels and gene expression during deetiolation in pea. Plant Physiol, 2002, 123: 734–741
[6]Stavang J A, Lindgard B, Emtsen A, Lid S E, Moe R, Olsen J E. Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea. Plant Physiol, 2005, 138: 2344–2354
[7]Dai M, Zhao Y, Ma Q, Hu Y F, Hedden P, Zhang Q F, Zhou D X. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physioy, 2007, 144: 121–133
[8]Weller J L, Hecht V, Vander Schoor J K, Davidson S E, Ross J J. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway. Plant Cell, 2009, 10: 1–14
[9]Collard B C Y, Mackill D J. Start codon targeted (SCoT) polymorphism: A simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep, 2009, 27: 86–93
[10]Joshi C, Zhou H, Huang X Q Chiang V L. Context sequences of translation initiation codon in plants. Plant Mol Biol, 1997, 35: 993–1001
[11]Sawant S V, Singh P K, Gupta S K, Madnala R, Tuli R. Conserved nucleotide sequences in highly expressed genes in plants. J Genet, 1999, 78: 123–131
[12]Xiong F-Q(熊发前), Tang R-H(唐荣华), Chen Z-L(陈忠良), Pan L-H(潘玲华), Zhuang W-J(庄伟建). SCOT: a novel gene targeted marker technique based on the translation start codon. Mol Plant Breed (分子植物育种), 2009, 7(3): 635–638 (in Chinese with English abstract)
[13]Giranton J L, Dumas C, Cock J M, Gaude T. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. Proc Natl Acad Sci USA, 2000, 97: 3759–3764
[14]Hajouj T, Michelis R, Gepstein S. Cloning and characterization of a receptor-like protein kinase gene associated with senescence. Plant Physiol, 2000, 124: 1305–1314
[15]Clark S E, Williams R W, Meyerowitz E M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 1997, 89: 575–585
[16]Sessa G D, Ascenzo M, Loh Y T, Martin G B. Biochemical properties of two protein kinases involved in disease resistance signaling in tomato. J Biol Chem, 1998, 273: 15860–15865
[17]Torii K U. The Arabidopsis ERECTA gene encodes aputative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996, 8: 735–746
[18]Hong S W, Jon J H, Kwak J M, Nam H G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt and cold treatments in Arabidopsis thaliana. Plant Physiol, 1997, 113: 1203–1212
[19]Wu J-M(吴建明), Li Y-R(李杨瑞), Yang L(杨柳), Wang A-Q(王爱勤), Yang L-T(杨丽涛). Relationship between gibberellin-induced internode elongation and endogenous hormone changes in sugarcane. Chin J Trop Crops (热带作物学报), 2009, 30(10): 1452–1456 (in Chinese with English abstract)
[20]Lalty J H, Lee B M, Wright P E. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol, 2001, 11: 39–46
[21]Liu H-M(刘梅芳), Zhou S-F(周淑芬), Xu G-L(徐桂磊), Liu H-Q(刘华清), Wang F(王锋). Expression analysis of a rice CCCH-type zinc finger gene. Fujian J Agric Sci (福建农业学报), 2008, 23: 225–230 (in Chinese with English abstract)
[22]Yue C-W(岳昌武), Xiao J(肖静), Ling X(凌锌), Zeng N(曾霓). Effect of low temperature stress on sweet potato S-adenosyl methionine synthetase gene expression. Agric Sci & Technol (农业科学与技术), 2008, 9(1): 11–14 (in Chinese with English)
[23]Jia L-N(贾丽娜), Zhang H-J(张慧杰), Zhang Y-M(张晏萌), Yang Y-R(杨玉荣), Yu A-L(余爱丽). Cloning and sequence analysis of SAMS gene from Zea mays. J Hebei Agric Sci (河北农业科学), 2008, 12(8): 53–55 (in Chinese with English abstract)
[24]Murase K, Hirano Y, Sun T P, Hakoshima T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 2008, 456: 459–463
[25]Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T Y, Hsing Y C, Kitano H, Yamaguchi I, Matsuoka M. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693–698
[26]Ueguchi-Tanaka M, Nakajima M. Katoh E, Ohmiyaa H, Asanoa K, Sajic S, Hongyuc X, Ashikaria M, Kitanoa H, Yamaguchid I, Matsuoka M. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. Plant Cell, 2007, 19: 2140–2155
[1] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[2] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[5] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[6] 杨宗桃, 刘淑娴, 程光远, 张海, 周营栓, 商贺阳, 黄国强, 徐景升. 甘蔗类泛素蛋白UBL5应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2022, 48(2): 332-341.
[7] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作[J]. 作物学报, 2021, 47(8): 1522-1530.
[8] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[9] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[10] 李富, 王延周, 严理, 朱四元, 刘头明. 苎麻茎皮环状RNA表达谱分析[J]. 作物学报, 2021, 47(6): 1020-1030.
[11] 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081.
[12] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[13] 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893.
[14] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[15] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!