欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 302-308.doi: 10.3724/SP.J.1006.2011.00302

• 耕作栽培·生理生化 • 上一篇    下一篇

非对称性增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响

田云录1,陈金1,邓艾兴2,郑建初3,张卫建1,2,*   

  1. 1 南京农业大学应用生态研究所,江苏南京 210095;2 中国农业科学院作物科学研究所 / 农业部作物生理生态与栽培重点开放实验室,北京 100081;3 江苏省农业科学院,江苏南京 210014
  • 收稿日期:2010-07-26 修回日期:2010-10-07 出版日期:2011-02-12 网络出版日期:2010-12-15
  • 通讯作者: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856
  • 基金资助:

    本研究由国家自然科学基金项目(30771278), 江苏省自然科学基金项目(BK2007159), 教育部新世纪优秀人才资助计划项目(NCET-05-0492)和中国农业科学院院所长基金项目资助。

Effects of Asymmetric Warming on Contents and Components of Starch and Protein in Grains of Winter Wheat under FATI Facility

TIAN Yun-Lu1,CHEN Jin1,DENG Ai-Xing2,ZHENG Jian-Chu3,ZHANG Wei-Jian1,2,*   

  1. 1 Institute of Applied Ecology, Nanjing Agricultural University, Nanjing 210095, China; 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/ Key Laboratory of Crop Physiology, Ecology & Production, Ministry of Agriculture, Beijing 100081, China; 3 Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
  • Received:2010-07-26 Revised:2010-10-07 Published:2011-02-12 Published online:2010-12-15
  • Contact: 张卫建, E-mail: zhangweij@caas.net.cn, Tel: 010-62156856

摘要: 气候变暖呈现明显的非对称性,冬春季和夜间的增温趋势显著。参考国外先进的田间开放式增温方法,2007—2009年在江苏南京开展了昼夜不同增温对冬小麦籽粒淀粉和蛋白质含量及其组分的影响研究。全天、白天和夜间3种增温处理分别显著提前了冬小麦的灌浆期,并改变了灌浆期高于32℃高温的出现时间和天数,引起了籽粒中淀粉组分、蛋白质含量及蛋白质组分的明显变化。3种增温处理中,冬小麦总淀粉含量差异不显著,但均显著提高了籽粒中直/支淀粉的比例。其中白天增温的直/支比最高,两年分别比对照提高6.9%和46.2%。增温处理使籽粒中总蛋白质含量显著降低,并呈现对照>白天>夜间>全天的趋势。与对照相比,全天、白天和夜间增温的籽粒蛋白质含量两年平均分别下降9.1%、5.4%、6.9%。增温处理对籽粒蛋白质组分的影响比较复杂,但两年结果表明,白天增温对蛋白质组分的影响趋势一致,均清蛋白含量最低,球蛋白含量最高,谷/醇比最低。上述结果表明,气候变暖不仅将影响作物的生育时期,而且还直接影响温度高低。增温对冬小麦品质的影响比较复杂,不同年份及变暖情景之间的增温效应差异显著。

关键词: 气候变暖, 开放式增温, 冬小麦, 籽粒品质, 淀粉, 蛋白质

Abstract: Climate warming presents significantly asymmetric trends with greatly seasonal and diurnal differences, greater temperature elevations existing in the winter-spring season than in the summer-autumn season and at the nighttime than at the daytime. To date, this is till lack of evidence about the effects of asymmetric warming on the quality of winter-wheat grain based on field experiments. Here, we performed field warming experiment under free air temperature increased (FATI) facility to investigate the impacts of asymmetric warming on the contents and components of starch and protein in winter-wheat grain during 2007-2009 in Nanjing, Jiangsu province, China. The results showed that the all-day warming (AW), daytime warming (DW), and nighttime warming (NW) treatments significantly advanced the grain-filling stage and changed the appearance time and days of high temperature above 32°C in grain-filling stage, consequently resulting in obvious changes of starch component, protein content and protein components. Treatments AW, DW, and NW had no significant impact on the starch content of winter-wheat grain but tended to increase the ratio of amylose content to amylopectin content. The highest values of the ratio of amylose content to amylopectin content existed in the DW plots which were 6.9% and 46.2% higher than those in the control plots in the two years, respectively. The content of grain protein was significantly decreased by warming with the content order of CK > DW > NW > AW. Warming decreased the grain protein contents by 9.1%, 5.4%, and 6.9%, respectively in the AW, DW, and NW treatments on average of the two years. The effects of warming on grain protein components were complicated. However, DW showed a regular impact on protein components. The two-year result showed that the lowest content of albumin and the greatest content of globulin occurred in the DW plot with a lowest ratio of glutelin content to gliadin content. All these results demonstrate that the effects of asymmetric climate warming on the quality of winter-wheat grain are complicated with significant differences among warming patterns and experimental years.

Key words: Climate warming, Free air temperature increased (FATI), Winter wheat, Grain quality, Starch, Protein

[1]IPCC. Climate Change (2007). Synthesis Report: Summary for Policymakers. http://www.ipcc.ch
[2]Li C-Y(李崇银), Weng H-Y(翁衡毅), Gao X-Q(高晓清), Zhong M(钟敏). Initial investigation of another possible reason to cause global warming. Chin J Atmospheric Sci (大气科学), 2003, 27(5): 789–797 (in Chinese with English abstract)
[3]Yan M-H(闫敏华), Chen P-Q(陈泮勤), Deng W(邓伟), Liang L-Q(梁丽乔). Further understanding of the Sanjiang Plain warming: changes in maximum and minimum air temperature. Ecol Environ(生态环境), 2005, 14(2): 151–156 (in Chinese with English abstract)
[4]Ren G-Y(任国玉), Xu M-Z(徐铭志), Chu Z-Y(初子莹), Guo J(郭军), Li Q-X.(李庆祥), Liu X-N(刘小宁), Wang Y(王颖). Changes of surface air temperature in China during 1951–2004. Climatic Environ Res (气候与环境研究), 2005, 10(4): 717–727 (in Chinese with English abstract)
[5]Xu Z-F(徐兆飞), Zhang H-Y(张惠叶), Zhang D-Y(张定一). Wheat Quality and Improvement (小麦品质及其改良). Beijing: China Meteorological Press, 2000 (in Chinese)
[6]Rahman S, Kosar-Hashemi B, Samuel M S, Hill A, Abbott D C, Skerritt J H, Preiss J, Appels R, Morell M K. The major proteins of wheat endosperm starch granules. Aust J Plant Physiol, 1995, 22: 793–803
[7]Yan J(阎俊), He Z-H(何中虎). Effects of genotype, environment and G×E interaction on starch quality traits of wheat grown in Yellow and Huai River Valley. J Triticeae Crops (麦类作物学报), 2001, 21(2): 14–19 (in Chinese with English abstract)
[8]Keeling P L, Bacon P J, Holt D C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 1993, 191: 342–348
[9]Jenner C F. Starch synthesis in the kernel of wheat under high temperature conditions. Aust J Plant Physiol, 1994, 21: 791–806
[10]Panozzo J F, Eagles H A. Cultivar and environmental effects on quality characters in wheat: I. Starch. Aust J Plant Physiol, 1998, 49: 757–766
[11]Breseghello F, Finney P L, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells M E. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci, 2005, 45: 1685–1695
[12]Davies J, Berzonsky W A. Evaluation of spring wheat quality traits and genotypes for production of Cantonese Asian noodles. Crop Sci, 2003, 43: 1313–1319
[13]Ma D-Y(马冬云), Guo T-C(郭天财), Wang C-Y(王晨阳), Zhu Y-J(朱云集), Wang H-C(王化岑). Investigation on starch pasting properties of winter wheat in different sites. Acta Agric Boreali-Sin (华北农学报), 2004, 19(4): 59–61 (in Chinese)
[14]Zhao C(赵春), Ning T-Y(宁堂原), Jiao N-Y(焦念元), Han B(韩宾), Li Z-J(李增嘉). Effects of genotype and environment on protein and starch quality of wheat grain. Chin J Appl Ecol (应用生态学报), 2005, 16(7): 1257–1260 (in Chinese with English abstract)
[15]Tian Z-H(田志会), Sun Y(孙彦), Guo Y-Q(郭玉琴). Effects of main ecological factors on nutrition and baking quality of wheat. J Beijing Agric College (北京农学院学报), 2000, 15(2): 67–71 (in Chinese with English abstract)
[16]Souza E J, Martin J M, Guttieri M J, O’Brien K M, Habernicht D K, Lanning S P, McLean R, Carlson G R, Talbert L E. Influence of genotype, environment, and nitrogen management on spring wheat quality. Crop Sci, 2004, 44: 425–432
[17]Wu D-B(吴东兵), Cao G-C(曹广才), Wang X-F(王秀芳), Qiang X-L(强小林), Li M(李萌). Relationship between growing process & climatic conditions and the quality of grain of autumn sown wheat. J Hebei Agric Sci (河北农业科学), 2003, 7(1): 5–10 (in Chinese with English abstract)
[18]Cao G-C(曹广才), Wu D-B(吴东兵), Chen H-Q(陈贺芹), Qiang X-L(强小林), Dong M(冬梅), Kou H(寇嗥), Wang J-L(王建林), Hou L-B(侯立白), Li M(李萌). Relationship between temperature, sunshine and quality of spring-sowing wheat. Sci Agric Sin (中国农业科学), 2004, 37(5): 663–669 (in Chinese with English abstract)
[19]Li X-Y(李向阳), Zhu Y-J(朱云集), Guo T-C(郭天财). Preliminary analysis on the relationship between wheat canopy temperature and yield with quality in filling stage in different genotypes. J Triticeae Crops (麦类作物学报), 2004, 24(2): 88–91 (in Chinese with English abstract)
[20]Blumenthal C S, Bekes F, Batey I L, Wrigley C W, Moss H J, Mares D J, Barlow E W R. Interpretation of grain quality results from wheat variety trials with reference to higher temperature stress. Aust J Agric Res, 1991, 42: 325–334
[21]Stone P J, Nicolas M E. Wheat cultivars vary widely in their response of grain yield and quality of short periods of post-anthesis heat stress. Aust J Plant Physiol, 1994, 21: 887–900
[22]Zhao H(赵辉), Jing Q(荆奇), Dai T-B(戴廷波), Jiang D(姜东), Cao W-X(曹卫星). Effects of post-anthesis high temperature and water stress on activities of key regulatory enzymes involved in protein formation in two wheat cultivars. Acta Agron Sin (作物学报), 2007, 33(12): 2021–2027 (in Chinese with English abstract)
[23]Niu S L, Wan S Q. Warming changes plant competitive hierarchy in a temperate steppe in northern China. J Plant Ecol, 2008, 1: 103–110
[24]Nijs I, Kockelbergh F, Teughels H. Free air temperature increase (FATI): a new tool to study global warming effects on plants in the field. Plant, Cell & Environ, 1996, 19: 495–502
[25]Tian Y-L(田云录), Zheng J-C(郑建初), Zhang B(张彬), Chen J(陈金), Dong W-J(董文军), Yang F(杨飞), Zhang W-J(张卫建). System design of free air temperature increased (FATI) for upland with three diurnal warming scenarios and their effects on winter-wheat growth and yield. Sci Agric Sin (中国农业科学), 2010, 43(18): 3724–3731 (in Chinese with English abstract)
[26]Shanghai Plant Physiology Association (上海植物生理学会). Modern Laboratory Manual of Plant Physiology (现代植物生理学实验手册), Beijing: Science Press, 1999 (in Chinese)
[27]Sasaki T, Yasui T, Matsuki J, Satake T. Comparison of physical properties of wheat starch gels with different amylase content. Cereal Chem, 2002, 79: 861–866
[28]Mu P-Y(穆培源), He Z-H(何中虎), Xu Z-H(徐兆华), Wang D-S(王德森), Zhang Y(张艳), Xia X-C(夏先春). Waxy protein identification and starch pasting properties of CIMMYT wheat lines. Acta Agron Sin (作物学报), 2006, 32(7): 1071–1075 (in Chinese with English abstract)
[29]Smika D E, Greb B W. Protein content of winter wheat grain as related to soil and climatic factors in the semiarid Central Great Plains. Agron J, 1973, 65: 433–436
[30]Wrigley C W, Blumenthal C, Gras P W, Barlow E W R. Temperature variation during grain filling and changes in wheat grain quality. Aust J Plant Physiol, 1994, 21: 875–885
[31]Blumenthal C, Bekes F, Gras P W, Barlow E W R, Wrigley C W. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem, 1995, 72: 539–544
[1] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[4] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[5] 阮俊梅, 张俊, 刘猷红, 董文军, 孟英, 邓艾兴, 杨万深, 宋振伟, 张卫建. 田间开放式增温对东北水稻氮素利用的影响[J]. 作物学报, 2022, 48(1): 193-202.
[6] 陈云, 刘昆, 张宏路, 李思宇, 张亚军, 韦佳利, 张耗, 顾骏飞, 刘立军, 杨建昌. 机插密度和穗肥减量对优质食味水稻品种籽粒淀粉合成的影响[J]. 作物学报, 2021, 47(8): 1540-1550.
[7] 张骁, 闫岩, 王文辉, 郑恒彪, 姚霞, 朱艳, 程涛. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报, 2021, 47(8): 1563-1580.
[8] 杨帆, 钟晓媛, 李秋萍, 李书先, 李武, 周涛, 李博, 袁玉洁, 邓飞, 陈勇, 任万军. 再生稻次适宜区迟播栽对不同杂交籼稻淀粉RVA谱的影响[J]. 作物学报, 2021, 47(4): 701-713.
[9] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[10] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[11] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
[12] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[13] 周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展[J]. 作物学报, 2021, 47(10): 1843-1853.
[14] 刘培勋,马小飞,万洪深,郑建敏,罗江陶,蒲宗君. 两个不同籽粒硬度小麦的比较蛋白组学分析[J]. 作物学报, 2020, 46(8): 1275-1282.
[15] 赵春芳,岳红亮,田铮,顾明超,赵凌,赵庆勇,朱镇,陈涛,周丽慧,姚姝,梁文化,路凯,张亚东,王才林. 江苏和东北粳稻稻米理化特性及WxOsSSIIa基因序列分析[J]. 作物学报, 2020, 46(6): 878-888.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!