欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (02): 294-301.doi: 10.3724/SP.J.1006.2011.00294

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同水分胁迫下小麦胚芽鞘和胚根长度的QTL分析

袁倩倩,李卓坤,田纪春*,韩淑晓   

  1. 山东农业大学 / 作物生物学国家重点实验室小麦品质育种室,山东泰安 271018
  • 收稿日期:2010-05-18 修回日期:2010-09-20 出版日期:2011-02-12 网络出版日期:2010-12-15
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2009CB118301), 国家自然科学基金项目(30971764)和农业部行业科研基金(nyhyzx07-002)资助。

QTL Mapping for Coleoptile Length and Radicle Length in Wheat under Different Simulated Moisture Stresses

YUAN Qian-Qian,LI Zhuo-Kun,TIAN Ji-Chun*,HAN Shu-Xiao   

  1. Group of Quality Wheat Breeding of Key Laboratory of Crop Biology / Shandong Agricultural University, Tai’an 271018, China
  • Received:2010-05-18 Revised:2010-09-20 Published:2011-02-12 Published online:2010-12-15
  • Contact: 田纪春, E-mail: jctian@sdau.edu.cn, Tel: 0538-8242040

摘要: 小麦胚芽鞘和胚根在不同渗透溶液下的长度变化是鉴评小麦幼苗抗逆性的重要指标。以小麦花培3号×豫麦57的DH株系衍生的含168个组合的永久F2 (immortalized F2, IF2)群体为材料,在蒸馏水(正常条件)以及10%、20%和30%聚乙二醇(PEG-6000)模拟水分胁迫处理下,进行胚芽鞘长和胚根长度的数量性状基因(QTL)定位分析。利用完备区间作图法,共检测到影响胚芽鞘和胚根长度的23个QTL,单个QTL对表型的贡献率为4.93%~35.37%。位于4B染色体区间Xcfd39.2–Xcfd22.2上影响胚芽鞘长度的位点QCl4B,具有最大的遗传效应,贡献率为35.37%;在3D染色体Xcfd223–Xbarc323区段,正常条件和20% PEG-6000处理下同时检测到影响胚芽鞘长度的QTLQCl3D-a,其贡献率分别为7.83%和11.74%。另外,在10% PEG-6000处理下,3D染色体上的相近区域还定位出了影响胚芽鞘长度的QCl3D-b位点;在染色体1A和染色体5A1上各检测出与胚根长度有关的2个和3个不同的QTL;在6D染色体Xswes679.1–Xcfa2129和Xwmc412.1–Xcfd49区间分别检测到2个影响胚芽鞘长度和胚根长度的QTL。这些主效QTL可用于胚芽鞘和根系的分子标记辅助选择。

关键词: 小麦, “永久F2”群体, 胚芽鞘长度, 胚根长度, QTL

Abstract: Coleoptile length and Radicle length are the important indexes to evaluate resistance of wheat (Triticum aestivum L.) seedlings to stresses. For mapping quantitative trait loci (QTLs) for lengths of coleoptile and Radicle in wheat, a set of immortalized F2 (IF2) population (168 lines) from Huapei 3 ´ Yumai 57 double haploid (DH) lines was treated with distilled water (normal condition) and 10%, 20%, and 30% of polyethylene glycol (PEG-6000). The coleoptile length (CL) and radicle length (RL) of the parents and the 168 IF2 lines were measured after 7 d of treatment. QTLs for CL and RL were detected using 323 SSR markers, which were distributed in the whole genome of wheat. Based on inclusive composite interval mapping (ICIM) method, we identified 11 additive QTLs for CL and 12 additive QTLs for RL under normal and the three stress conditions. Each locus explained 4.93%–35.37% of phenotypic variance. In the interval between Xcfd39.2and Xcfd22.2on chromosome 4B, QTL QCl4B had the phenotypic contribution of 35.37%. Another QTL QCl3D-a located between Xcfd223 and Xbarc323 on chromosome 3D was detected in both normal and 20% PEG-6000 treatments, and explained phenotypic variances of 7.83% and 11.74%, respectively. QTL QCl3D-b was located on the same chromosome and close to QCl3D-a. In the linkage groups 1A and 5A1, three and two QTLs associated with RL were detected respectively. On chromosome 6D, two QTLs for CL and RL were found in the interval between Xswes679.1 and Xcfa2129 and the interval between Xwmc412.1and Xcfd49, respectively. The major QTLs identified can be applicable in marker-assisted selection in wheat breeding for coleoptile and root.

Key words: Wheat, Immortalized F2 population, Coleoptile length, Radicle length, Quantitative trait locus

[1]Zhang Y-L(张余良), Pan J(潘洁), Shao Y-C(邵玉翠), Zheng H-L(郑鹤龄), Gao B-Y(高宝岩), Sun C-Z(孙长载). Present Condition and development of water-saving techniques of agriculture. Tianjin Agric Sci (天津农业科学), 2004, 10(1): 33–36 (in Chinese with English abstract)
[2]Guan Z-B(关周博), Wang S-Q(王士强), Chen L(陈亮), Tang N(唐娜), Hu Y-G(胡银岗). Variation of coleoptile length in winter wheat varieties under PEG simulated drought stress and its association with their drought tolerance. Agric Res Arid Areas (干旱地区农业研究), 2009, 27(4): 125–130 (in Chinese with English abstract)
[3]Hu S-P(胡颂平), Yang H(杨华), Zou G-H(邹桂华), Liu H-Y(刘鸿艳), Liu G-L(刘国兰), Mei H-W(梅捍卫), Cai R(蔡润), Li M-S(李名寿), Luo L-J(罗利军). Relationship between coleoptile length and drought resistance index of rice and their QTLs. Chin Rice Sci (中国水稻科学), 2006, 20 (1): 19–24 (in Chinese with English abstract)
[4]Cosgrove D J, Li Z C. Role of expansion in cell enlargement of oat coleoptiles. Plant Physiol, 1993, 103: 1321–1328
[5]Trethowan R M, Singh R P, Espino J H, Crossaa J, van Ginkela M. Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Res, 2001, 70: 167–176
[6]Cosgrove D J. Expansive growth of plant cell walls. Plant Physiol Biochem, 2000, 38: 109–124
[7]Wang W(王玮), Zou Q(邹琦), Yang X-H(杨兴洪), Peng T(彭涛), Li Y(李岩). Studies on the relativity among coleoptile length, osmotic adjustment and yield in wheat under water stress. Chin Bull Bot (植物学通报), 1997, 14(suppl): 55–59 (in Chinese with English abstract)
[8]Zou Q(邹琦), Wang W(王玮), Yang X-H(杨兴洪). Identification of drought resistance in winter wheat—the new method of the coleoptile length under water stress. Chin Agric Sci Bull (中国农学通报), 2000, 16(15): 23–25 (in Chinese)
[9]Yang G-H(杨国航), Wang W-H(王卫红), Song H-X(宋慧欣), Li Y-Q(栗雨勤), Qi H(齐华), Wang T-Y(王天宇), Zhao J-R(赵久然). Analysis of drought resistance of maize hybrids in rain-fed farming. Crops (作物杂志), 2009, (5): 78–81 (in Chinese with English abstract)
[10]Hao S-R(郝树荣), Guo X-P(郭相平), Wang W-M(王为木), Zhang L-J(张烈君), Wang Q(王琴), Wang Q-M(王青梅), Liu Z-P(刘展鹏). Effects of water stress in tillering stage and rewatering on rice root growth. Agric Res Arid Areas (干旱地区农业研究), 2007, 25(1): 149–152 (in Chinese with English abstract)
[11]Jing R-L(景蕊莲), Hu R-H(胡荣海), Zhu Z-H(朱志华). A study on heritabilities of seedling morphological traits and drought resistance in winter wheat cultivars of different genotype. Acta Bot Boreali-Occid Sin (西北植物学报), 1997, 17(2): 152–157 (in Chinese with English abstract)
[12]Zhou X-G(周晓果), Jing R-L(景蕊莲), Hao Z-F(郝转芳), Chang X-P(昌小平), Zhang Z-B(张正斌). Mapping QTL for seedling root traits in common wheat. Sci Agric Sin(中国农业科学), 2005, 38(10): 1951–1957 (in Chinese with English abstract)
[13]Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. Henan Agric Sci (河南农业科学), 2007, (5): 36−37 (in Chinese with English abstract)
[14]Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed Ind (中国种业), 2004, (4): 54
[15]Zhang K P, Tian J C, Zhao L, Liu B, Chen G F. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetics, 2009, 135: 257–265
[16]Wang J-K(王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin (作物学报), 2009, 35(2): 239–245 (in Chinese with English abstract)
[17]Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374
[18]Li H, Ribaut J M, Li Z, Wang J. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260
[19]Zhang L, Li H, Li Z, Wang J. Interactions between markers can be caused by the dominance effect of QTL. Genetics, 2008, 180: 1177–1190
[20]McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat. 2005.
[2010-01-10]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html
[21]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153–160
[22]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579
[23]Rebetzke G, Appels R, Morrison A D, Richards R A, McDonald G, Ellis M H, Spielmeyer W, Bonnett D G. Aust J Agric Res, 2001, 52: 1221–1234
[24]Allan R E. Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci, 1989, 29: 1103–1108
[25]Rebetzke G J, Richards R A, Fettell N A, Long M, Condon A G, Forrester R I, Botwright T L. Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep-sown wheat. Field Crops Res, 2007, 100: 10–23
[26]Tang N(唐娜), Jiang Y(姜莹), He B-R(何蓓如), Hu Y-G(胡银岗). Effects of dwarfing genes of Rht-B1b, Rht-D1b and Rht8 with different response to GA3 on coleoptile length and plant height of wheat. Sci Agric Sin (中国农业科学), 2009, 42(11): 3774–3784 (in Chinese with English abstract)
[27]Wang Z-L(王竹林), Wang H(王辉), Sun D-J(孙道杰), He Z-H(何中虎), Xia X-C(夏先春), Liu S-D(刘署东). QTL mapping for plant height of wheat using a F2:3 population. J Northwest A&F Univ (Nat Sci Edn)(西北农林科技大学学报·自然科学版), 2008, 36(12): 60–63 (in Chinese with English abstract)
[28]Li Z-K(李卓坤), Peng T(彭涛), Zhang W-D(张卫东), Xie Q-G(谢全刚), Tian J-C(田纪春). Analysis of QTLs for root traits at seedling stage using an “immortalized F2” population in wheat. Acta Agron Sin (作物学报), 2010, 36(3): 442–448 (in Chinese with English abstract)
[29]Cao L-Y(曹立勇), Zhu J(朱军), Ren L-F(任立飞), Zhao S-T(赵松涛), Yan Q-C(颜启传). Mapping QTLs and epistasis for seedling vigor in rice (Oryza sativa L.). Acta Agron Sin (作物学报), 2002, 28(6): 809–815 (in Chinese with English abstract)
[30]Zhang Z-B(张正斌), Xu P(徐萍). Reviewed on wheat genome. Hereditas (遗传), 2002, 24(3): 389–394 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[9] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[10] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!