欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (05): 911-917.doi: 10.3724/SP.J.1006.2011.00911

• 耕作栽培·生理生化 • 上一篇    下一篇

水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响

郭彦军1,倪郁2,郭芸江1,韩龙1,唐华1,玉永雄1   

  1. 1 西南大学动物科技学院,重庆 400716;2 西南大学农学与生物科技学院,重庆 400716
  • 收稿日期:2010-09-27 修回日期:2011-01-06 出版日期:2011-05-12 网络出版日期:2011-03-24
  • 基金资助:

    本研究由国家自然青年科学基金项目(30800802)和国家重点基础研究发展计划(973计划)项目(2007CB108901)资助。

Effect of Soil Water Deficit and High Temperature on Leaf Cuticular Waxes and Physiological Indices in Alfalfa (Medicago sativa) Leaf

GUO Yan-Jun1,NI Yu2,GUO Yun-Jiang1,HAN Long1,TANG Hua1,YU Yong-Xiong1   

  1. 1 Faculties of Animal Science and Technology; 2 Agronomy and Bio-Technology, Southwest University, Chongqing 400716, China
  • Received:2010-09-27 Revised:2011-01-06 Published:2011-05-12 Published online:2011-03-24

摘要: 选用2个抗旱性不同的紫花苜蓿品种,敖汉(强抗旱)和三得利(弱抗旱),在水热胁迫条件下,调查其叶表皮蜡质含量及组分变化规律、蜡质含量与气体交换参数、脯氨酸及叶片相对含水量之间的关系。结果表明,紫花苜蓿叶表皮存在致密的蜡质层,蜡质晶体结构呈片状,无特殊的晶格方向。叶表皮蜡质主要由烷(1.98%~3.38%)、醇(79.97%~84.98%)、酯类(0.08%~0.24%)及其他少量未知物质组成(7.77%~13.38%)。品种类型、环境条件共同影响叶表皮蜡质的沉积。敖汉叶表皮蜡质含量显著高于三得利。水分胁迫后烷类比例增加(81.22%~108.16%),醇类比例下降(3.32%~12.54%),强抗旱品种叶表皮蜡质含量和气体交换参数无显著变化(除胞间二氧化碳浓度显著下降外),而弱抗旱品种蜡质含量和叶片光合速率、蒸腾速率、气孔导度及胞间二氧化碳浓度均显著下降。说明表皮蜡质限制水分散失,蜡质组分中烷类物质可能主要具限制水分散失的功能。高温及水热互作胁迫处理下,紫花苜蓿叶片光合速率和蒸腾速率下降,水分利用效率提高,叶片脯氨酸含量增加,相对含水量下降,敖汉蜡质含量下降,三得利蜡质含量无显著变化。表明在严重胁迫条件下紫花苜蓿主要通过关闭气孔和渗透调节来限制水分散失。

关键词: 水分胁迫, 高温, 紫花苜蓿, 表皮蜡质, 抗旱性, 晶体结构

Abstract: Cuticular wax, exposed at the outermost surface of plant organs, plays important roles in interactions of plant with environment and plays a critical role in plant drought tolerance by reducing cuticular water loss. In the experiment, two alfalfa (Medicago sativa) cultivars with different drought resistances, Aohan (high resistance) and Sanditi (low resistance), were selected to analyse the dynamics of leaf cuticular wax content and components, and the relationships between waxes and gas exchange indices under water deficit and high temperature stresses. The results showed that the alfalfa leaf surface was covered by thick wax platelets without specific orientations, which were constituted of alkanes (1.98%–3.38%), primary alcohols (79.97%–84.98%), esters (0.08%–0.24%), and small amount of unknown constituents (7.77%–13.38%). The wax deposition on alfalfa leaf was controlled by both variety type and environments. The wax content of Aohan was significantly higher than that of Sanditi. Under drought treatment, the proportions of alkanes in total wax increased (81.22%–108.16%), that of primary alcohol decreased (3.23%–12.54%); cuticular wax, photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of Aohan changed insignificantly except for intercellular carbon dioxide (Ci), while those of Sanditi decreased significantly, indicating that cuticular wax might take part in the process of water metabolism and the alkanes in total waxes might play important role in controlling water loss. Under the conditions of high temperature, Pn, Tr, Gs, Ci, and leaf relative water content decreased significantly, water use efficiency (Pn/Tr) and proline content increased significantly in both cultivars; the total cuticular wax content unchanged in Aohan but significantly decreased in Sanditi, indicating that stomatal closure and osmotic adjustment were the main paths taken by alfalfa under severe stressed conditions.

Key words: Water deficit, High temperature, Alfalfa (Medicago sativa), Cuticular waxes, Drought resistance, Crystalloids

[1]Li D-Q(李德全), Guo Q-F(郭清福), Zhang Y-Q(张以勤), Zou Q(邹琦), Cheng B-S(程炳嵩). Studies on the physiological characteristics of drought resistance in winter wheat. Acta Agron Sin (作物学报), 1993, 19(2): 125–132 (in Chinese with English abstract)
[2]Febrero A, Fernandez S, Molina-Cano J, Araus J. Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. J Exp Bot, 1998, 49: 1575–1581
[3]Sanchez F J, Manzanares M, Andres E F, Tenorio J L, Ayerbe L. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur J Agron, 2001, 15: 57–70
[4]Ni Y(倪郁), Guo Y-J(郭彦军). Progress in the study on genes encoding enzymes involved in biosynthesis of very long chain fatty acids and cuticular wax in plants. Hereditas (遗传), 2008, 30(5): 561–567 (in Chinese with English abstract)
[5]Bondada B R, Oosterhuis D M, Murph J B, Kyung S K. Effect of water stress on the epicuticular wax composition and ultra structure of cotton (Gossypium hirsutum L.) leaf, bract, and boll. Environ Exp Bot, 1996, 36: 61–69
[6]Samdur M Y, Manivel P, Jain V K, Chikani B M, Gor H K, Desai S, Misra J B. Genotypic differences and water-deficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43: 1294–1299
[7]Huang L(黄玲), Zhang Z-B(张正斌), Cui Y-T(崔玉亭), Liu M-Y(刘孟雨), Chai S-X(柴守玺), Chen Z-B(陈兆波). Relationship between wax content and water use efficiency of leaf and yield in wheat. J Triticeae Crops (麦类作物学报), 2003, 23(4): 41–44 (in Chinese with English abstract)
[8]Zhang Z-F(张志飞), Rao L-Q(饶力群), Xiang Z-X(向佐湘), Hu X-M(胡晓敏), Wang X-J(王晓杰). Epidermis wax content and drought resistance among different tall fescue (Festuca arundinacea Schreb.) varieties. Acta Bot Boreali-Occident Sin (西北植物学报), 2007, 27(7): 1417–1421 (in Chinese with English abstract)
[9]Zhang Z-B(张正斌), Shan L(山仑). Studies on relationship between drought resistance physiological traits and leaf curl degree and wax of wheat. Acta Agron Sin (作物学报), 1998, 24(5): 608–612(in Chinese with English abstract)
[10]Zhang J(张娟), Zhang Z-B(张正斌), Xie H-M(谢惠民), Dong B-D(董宝娣), Hu M-Y(胡梦芸), Xu P(徐萍). The relationship between water use efficiency and related physiological traits in wheat leaves. Acta Agron Sin (作物学报), 2005, 31(12): 1593–1599 (in Chinese with English abstract)
[11]Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol, 2007, 164: 1134–1143
[12]Ristic Z, Jenks M A. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. J Plant Physiol, 2002, 159: 645–651
[13]Goodwin S M, Jenks M A. Plant cuticle function as a barrier to water loss. In: Jenks M A, Hasegawa P M, eds. Plant Abiotic Stress. Oxford: Blackwell, 2005
[14]Mamrutha H M, Mogili T, Jhansi Lakshmi K, Rama N, Kosma D, Udaya Kumar M, Jenks M A, Nataraja K N. Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiol Biochem, 2010, 48: 690–696
[15]Koch K, Hartmann K D, Schreiberb L, Barthlott W, Neinhuis C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot, 2006, 56: 1–9
[16]Kang J-M(康俊梅), Fan F-C(樊奋成), Yang Q-C(杨青川). Study of drought resistance appraisal on 41 different alfalfa cultivars. Acta Agrest Sin(草地学报), 2004, 12(1): 21–23 (in Chinese with English abstract)
[17]Li H-S(李合生). Principles and Techniques of Plant Physiological Biochemical Experiment (植物生理生化实验原理和技术). Beijing: High Education Press, 2006. pp 250–256 (in Chinese)
[18]Zou Q(邹琦). Instruction of Plant Physiological Biochemical Experiment (植物生理生化实验指导). Beijing: China Agriculture Press, 1995. pp 36–37 (in Chinese)
[19]van Maarseveen C, Han H, Jetter R. Development of the cuticular wax during growth of Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Plant Cell Environ, 2009, 32: 73–81
[20]Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H. Classification and terminology of plant epicuticular waxes. Bot J Linn Soc, 1998, 26:237–260
[21]Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc, 2003, 75: 431–439
[22]Giese B N. Effects of light and temperature on the composition of epicuticular wax of barley leaves. Phytochemistry, 1975, 14: 921–929
[23]Maier C G A, Post-Beittenmiller D. Epicuticular wax on leek in vitro developmental stages and seedlings under varied growth conditions. Plant Sci, 1998, 134: 53–67
[24]Zhang J Y, Broeckling C D, Blancaflo E B, Sledge M, Sumne L W, Wang Z Y. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J, 2005, 42: 689–707
[25]Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lu S, Joubes J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. J Plant Physiol, 2009, 151: 1918–1929
[26]Johnson D A, Richards R A, Turner N C. Yield relations, gas exchange, and surface reflectances of near-isogenic wheat differing in glaucousness. Crop Sci, 1983, 23: 318–325
[27]Burghardt M, Riederer M. Cuticular transpiration. Biol Plant Cuticle, 2006, 23: 292–311
[28]Svenningsson M, Liljenberg C. Changes in cuticular transpiration rate and cuticular lipids of oat (Avena sativa) seedlings induced by water stress. Physiol Plant, 1986, 66: 9–14
[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[4] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[5] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 陈淼, 谢赛, 王超智, 李焱龙, 张献龙, 闵玲. 棉花GhPIF4调控高温下花药败育机制初探[J]. 作物学报, 2020, 46(9): 1368-1379.
[8] 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447.
[9] 徐银萍, 潘永东, 刘强德, 姚元虎, 贾延春, 任诚, 火克仓, 陈文庆, 赵锋, 包奇军, 张华瑜. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448-461.
[10] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[11] 郭丽丽,张茜茜,郝立华,乔雅君,陈文娜,卢云泽,李菲,曹旭,王清涛,郑云普. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6): 949-956.
[12] 田景山,张煦怡,张丽娜,徐守振,祁炳琴,随龙龙,张鹏鹏,杨延龙,张旺锋,勾玲. 新疆机采棉花实现叶片快速脱落需要的温度条件[J]. 作物学报, 2019, 45(4): 613-620.
[13] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[14] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[15] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!