作物学报 ›› 2011, Vol. 37 ›› Issue (09): 1577-1584.doi: 10.3724/SP.J.1006.2011.01577
李华丽1,陈美霞1,**,周东新2,陈顺辉3,陶爱芬1,李延坤1,马红勃1,祁建民1,*,郭玉春1,*
LI Hua-Li1,CHEN Mei-Xia1,ZHOU Dong-Xin2,CHEN Shun-Hui3,TAO Ai-Fen1,LI Yan-Kun1,MA Hong-Bo1,QI Jian-Min1,*,GUO Yu-Chun1,*
摘要: 以烤烟台烟7号与白肋烟白肋21作为杂交亲本,后代自交衍生的127个F2和F2:3家系为材料,构建了全长3 483 cM包括26个连锁群、190个标记位点的烟草遗传连锁图谱。通过一年两地各3次重复的随机区组田间试验,测定烟叶烟碱、总氯、总钾、叶长、茎叶夹角、白粉病6个重要性状,采用混合线性模型的复合区间作图法定位QTL并分析其遗传互作效应。结果检测到2个烟碱相关QTL、2个总氯相关QTL、1个总钾相关QTL、4个叶长相关QTL、茎叶夹角和白粉病相关QTL各1个,其中6个加性效应QTL和4对加加上位性效应QTL。这11个基因位点遗传效应中除加性效应外,上位性效应也具有重要作用。
[1]Xiao B-G(肖炳光), Zhu J(朱军), Lu X-P(卢秀萍), Li Y-P(李永平), Bai Y-F(白永富). Genetic analysis for chemical constituents in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2005, 31(12): 1557–1561 (in Chinese with English abstract) [2]Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268–1274 [3]Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69–91 [4]Xiao B-G(肖炳光), Xu Z-L(徐照丽), Chen X-J(陈学军), Shen A-R(申爱荣), Li Y-P(李永平), Zhu J(朱军). Genetic linkage map constructed by using a DH population for the flue-cured tobacco. Acta Tabacaria Sin (中国烟草学报), 2006, 12(4): 35–40 (in Chinese with English abstract) [5]Xiao B-G(肖炳光), Lu X-P(卢秀萍), Jiao F-C(焦芳蝉), Li Y-P(李永平), Sun Y-H(孙玉合), Guo Z-K(郭兆奎). Preliminary QTL analysis of several chemical components in flue-cured tobacco (Nicotiana tabacum L.). Acta Agron Sin (作物学报), 2008, 34(10): 1762–1769 (in Chinese with English abstract) [6]Cai C-C(蔡长春), Chai L-G(柴利广), Wang Y(王毅), Xu F-S(徐芳森), Zhang J-J(张俊杰), Lin G-P(林国平). Construction of genetic linkage map of burley tobacco (Nicotiana tabacum L.) and genetic dissection of partial traits. Acta Agron Sin (作物学报), 2009, 35(9): 1646–1654 (in Chinese with English abstract) [7]Bai D, Reeleder R, Brandle J E. Identification of two RAPD markers tightly linked with the Nicotiana debneyi for resistance to black root rot of tobacco. Theor Appl Genet, 1995, 91: 1184–1189 [8]Julio E, Verrier J L, Dorlhac de Borne F. Development of SCAR markers linked to three disease resistances based on AFLP within Nicotiana tabacum L. Theor Appl Genet, 2006, 112: 335–346 [9]Yi Y H, Rufty R C, Wernsman E A. Identification of RAPD markers linked to the wildfire resistance gene of tobacco using bulked segregant analysis. Tob Sci, 1998, 42: 52–57 [10]Julio E, Denoyes-Rothan B, Verrier J L, Dorlhac de Borne F. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Mol Breed, 2006, 18: 69–91 [11]Liu X-X(刘晓侠), Wang L(王荔), Wen G-S(文国松), Yang Y-Q(杨艳琼). Screening and study of RAPD markers linked to tobacco black shank resistance gene Bs1(t). Acta Agron Sin (作物学报), 2004, 30(5): 516–518 (in Chinese with English abstract) [12]Milla S R, Levin J S, Lewis R S, Rufty R C. RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D. B. Adam. in tobacco. Crop Sci, 2005, 45: 2346–2354 [13]Moon H, Nicholson J S. AFLP and SCAR markers linked to tomato spotted wilt virus resistance in tobacco. Crop Sci, 2007, 47: 1887–1894 [14]Yang J, Hu C C, Ye X Z. QTL Network 2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China, 2005 [15]McCouch S R, Cho Y G, Yang M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11–13 [16]Ma H-B(马红勃), Qi J-M(祁建民), Li Y-K(李延坤), Liang J-X(梁景霞), Wang T(王涛), Lan T(兰涛), Chen S-H(陈顺辉), Tao A-F(陶爱芬), Lin L-H(林荔辉), Wu J-M(吴建梅). Construction of a molecular genetic map of tobacco based on SRAP and ISSR markers. Acta Agron Sin (作物学报), 2008, 34(11): 1958–1963 (in Chinese with English abstract) [17]Li Y-K(李延坤). Construction of Genetic Linkage Map of Tobacco (Nicotiana tabacum L.). MS Dissertation of Fujian Agriculture and Forestry University, 2009 (in Chinese with English abstract) [18]Knapp S J, Bridges W C, Birkes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor Appl Genet, 1990, 79: 583–592 [19]Cai H W, Morishima H. Genomie regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet, 2000, 100: 840–846 [20]Richter T E, Pryor T J, Bennetzen J L, Hulbert S H. New rust resistance specificities associated with recombination in the Rpl complex in maize. Genetics, 1995, 141: 373–381 [21]Hammond K E, Jones J D G. Plant disease resistance genes: Unraveling how they work. Can J Bot 1996, 73(supp1-1): 495–505 [22]Witsenboer H, Kesseli R V, Fortin M, Stangellini M, Michelmore R W. Sources and genetic structure of a cluster of genes for resistance to three pathogens in lettuce. Thero Appl Genet, 1995, 91: 178–188 [23]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL × environment interactions in rice: I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141–153 [24]Yadav R S, Bidinger F R, Hash C T, Yadav Y P, Yadav O P, Bhatnagar S K, Howarth C J. Mapping and characterisation of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet, 2003, 106: 512–520 [25]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL×environment interactions for plant height using a doubled haploid population in cultivated wheat. Genet Genomics, 2008, 35: 119–127 [26]Cao G-Q(曹刚强), Zhu J(朱军), He C-X(何慈信), Gao Y-M(高用明), Wu P(吴平). QTL analysis for epistatic effects and QTL × environment interaction effects on final height of rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2001, 28(2): 135–143(in Chinese with English abstract) [27]Yu S B, Li J X, Xu C G, Tan Y F, Li X H, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet, 2002, 104: 619–625 [28]Shan D-P(单大鹏), Zhu R-S(朱荣胜), Chen L-J(陈立君), Qi Z-M(齐照明), Liu C-Y(刘春艳), Hu G-H(胡国华), Chen Q-S(陈庆生). Epistatic effects and QE interaction effects of QTLs for protein content in soybean. Acta Agron Sin (作物学报), 2009, 35(1): 41–47 (in Chinese with English abstract) [29]Zhang X-L(张先亮), Gao J-S(高俊山), Song G-L(宋国立), Liu F(刘芳). Additive and epistatic effects QTL analysis on upland cotton CRI-G6. Mol Plant Breed (分子植物育种), 2009, 7(2): 312–320 (in Chinese with English abstract) |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424. |
[3] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[4] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[5] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[8] | 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85. |
[9] | 赵雪, 周顺利. 玉米抗茎倒伏能力相关性状与评价研究进展[J]. 作物学报, 2022, 48(1): 15-26. |
[10] | 赵婧, 孟凡钢, 于德彬, 邱强, 张鸣浩, 饶德民, 丛博韬, 张伟, 闫晓艳. 不同磷效率大豆农艺性状与磷/铁利用率对磷素的响应[J]. 作物学报, 2021, 47(9): 1824-1833. |
[11] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[12] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[13] | 邓妍, 王娟玲, 王创云, 赵丽, 张丽光, 郭虹霞, 郭红霞, 秦丽霞, 王美霞. 生物菌肥与无机肥配施对藜麦农艺性状、产量性状及品质的影响[J]. 作物学报, 2021, 47(7): 1383-1390. |
[14] | 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401. |
[15] | 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859. |
|