欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (01): 36-42.doi: 10.3724/SP.J.1006.2012.00036

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

对一个新发现的棉纤维突变体的鉴定及特性分析

张锐,吕芬妮,王海海,郭旺珍*   

  1. 南京农业大学作物遗传与种质创新国家重点实验室,江苏南京 210095
  • 收稿日期:2011-06-13 修回日期:2011-09-14 出版日期:2012-01-12 网络出版日期:2011-11-07
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(30871558)和国家转基因生物新品种培育重大专项(2008ZX08009-003)资助。

Identification and Characterization of a Novel Fiber Mutant from Transgenic Progeny in Gossypium hirsutum L.

ZHANG Rui,LÜ Fen-Ni,WANG Hai-Hai,GUO Wang-Zhen*   

  1. National Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-06-13 Revised:2011-09-14 Published:2012-01-12 Published online:2011-11-07
  • Contact: 郭旺珍, E-mail: moelab@njau.edu.cn

摘要: 在农杆菌介导的转基因组织培养再生后代中发现了一个无绒有絮的纤维发育突变体,通过自交选择T3代获得其纯合体,命名为CM突变体。尽管CM突变体从转基因后代中发现,但和转基因插入位点无关,推测是在组织培养过程中产生的点突变所致。通过与陆地棉遗传标准系TM-1,海岛棉军海1号,以及新乡小吉无绒有絮(XinFLM),新乡小吉无绒无絮(XinWX),徐州142无绒无絮(XZ142WX),显性光子N1N1,隐性光子n2n2、SL-7-1、MD17及T586等一系列纤维发育突变体分别配制F2组合进行突变基因的遗传及等位性分析,结果表明CM突变体与纤维发育正常的TM-1和军海1号杂交,F1表型均为无绒有絮,F2表现无绒有絮和有绒有絮3∶1分离,说明该突变体与纤维发育正常材料相比,在短绒发育方面存在一个位点的差异,该突变性状由单显性基因控制。等位性测验及分子定位均表明, 控制该突变体短绒的基因与控制N1N1显性光子的N1基因等位。扫描电镜进一步证明该基因突变会造成纤维起始突起延迟。与N1N1突变体相比,CM突变体的衣分比N1N1显著高,而百粒重比N1N1极显著低。推测CM突变体中的突变基因与显性N1基因为复等位基因。

关键词: 陆地棉, 转基因, 纤维发育突变体, 鉴定

Abstract: The discovery and identification of the fiber mutant has been vital for genetic and functional genomic research in cotton. In this study, we found a linted-fuzzless fiber mutant in transgenic cotton by Agrobacterium-mediated transformation path, the pure line of the mutant was obtained in T3 generation. We named the novel fiber mutant as CM mutant. PCR analysis showed that the mutation trait had no relationship with T-DNA insertion, but was deduced to be caused by point mutation in the process of tissue culture. Analysis of inheritance and allelic tests were conducted by crossing CM mutant with TM-1, Junhai1, and a series of fiber developmental mutants such as XinFLM, N1N1, n2n2, and T586 with linted-fuzzless fiber and XinWX, XZ142WX, SL-7-1, and MD17 with lintless-fuzzless fiber, respectively. Of above 10 combinations, the F1 were fuzzless, and F2 generations of CM×TM-1 and CM×Junhai1, all showed the separation ratio of 3:1 of linted-fuzzless to linted-fuzzed phenotypes. Based on the genetic analysis, we indicated that there was one dominantly different locus between the mutant and TM-1or Junhai1. Allelic tests and gene mapping all showed that the fuzzless gene of the mutant was allelic to N1, dominantly controlling naked-seed trait. Scanning electron microscopy (SEM) analysis was conducted to investigate the development of fiber cell initials in CM mutant during early developmental stages (0–3 DPA). Just like N1N1 mutant, the mutation gene could result in the process of fiber cell formation and elongation delayed. Compared to N1N1, the lint percentage of CM was significantly higher and 100-seed weight was significantly lower. In conclusion, we speculate on that the mutation gene in CM is one of multiple allele genes of dominant naked-seed N1, and the result also shows the mutation reproducibility for fiber development in different cotton materials.

Key words: Gossypium hirsutum L., Transgenic analysis, Fiber developmental mutant, Identification

[1]Stewart J M. Fiber initiation on the cotton ovule (Gossypium hirsutum). Am J Bot, 1975, 62: 723–730
[2]Endrizzi J E, Turcotte E L, Kohel R J. Qualitative genetics, cytology and cytogenetics. In: Kohel R J, Lewis D F, eds. Agronomy: Cotton. Madison WI: American Society of Agronomy Inc, 1984. pp 59–80
[3]Kohel R J. Genetic nomenclature in cotton. J Hered, 1973, 64: 291–295
[4]Kohel R J, Narbuth E V, Benedict C R. Fiber development of Ligon Lintless-2 mutant of cotton. Crop Sci, 1992, 32: 733–735
[5]Kearney T H, Harrison G J. The inheritance of smoothness seeds in cotton. J Agric Res, 1927, 35: 193–217
[6]Ware J O, Benedict L I, Rolfe W H. A recessive naked-seed character in Upland cotton. J Hered, 1947, 38: 313–331
[7]Zhang T-Z(张天真), Pan J-J(潘家驹). Genetic analysis of fuzzless-lintless mutant in Gossypium hirsutum L. Jiangsu J Agric Sci (江苏农业学报), 1991, 7(3): 13–16 (in Chinese with English abstract)
[8]Turley R B, Kloth R H. Identification of a third fuzzless seed locus in upland cotton (Gossypium hirsutum L.). J Hered, 2002, 93: 359–364
[9]Du X M, Pan J J, Wang R H, Zhang T Z, Shi Y Z. Genetic analysis of presence and absence of lint and fuzz in cotton. Plant Breed, 2001, 120: 519–522
[10]Kohel R J. Genetic nomenclature in cotton. J Hered, 1973, 64: 291–295
[11]Endrizzi J E, Ramsay G. Identification of ten chromosome deficiencies of cotton. J Hered, 1980, 71: 45–48
[12]Rong J K, Pierce G J, Waghmare V N, Rogers C J, Desai A, Chee P W, May O L, Gannaway J R, Wendel J F, Wilkins T A, Paterson A H. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor Appl Genet, 2005, 111: 1137–1146
[13]Zhang D Y, Zhang T Z, Sang Z Q, Guo W Z. Comparative development of lint and fuzz using different cotton fiber-specific developmental mutants in Gossypium hirsutum. J Integr Plant Biol, 2007, 49: 1038–1046
[14]Lee J J, Hassan O S S, Gao W, Wei N E, Kohel R J, Chen X Y, Payton P, Sze S H, Stelly D M, Chen Z J. Developmental and gene expression analysis of a cotton naked seed mutant. Planta, 2006, 223: 418–432
[15]Bolton J J, Soliman K M, Wilkins T A, Jenkins J N. Aberrant expression of critical genes during secondary cell wall biogenesis in a cotton mutant, Ligon lintless-1 (Li-1). Compar Funct Genom, 2009,DOI: 10.1155/2009/659301
[16]John M E. Structural characterization of genes corresponding to cotton fiber mRNA E6: reduced E6 protein in transgenic plants by antisense gene. Plant Mol Biol, 1996, 30: 297–306
[17]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127
[18]Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of microsatellite markers in cotton with PAGE/silver staining. Cotton Sci (棉花学报), 2000, 12: 267–269 (in Chinese with English abstract)
[19]Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166–1174
[20]Van Ooijen J W, Voorrips R E. JoinMapR Version 3.0: Software for the calculation of genetic linkage maps. Wageningen: CPRO-DLO, 2001
[21]Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93: 77–78
[22]Leuhrsen K R. Insertion of Mul elements in the first intron of the Adh l-S gene of maize results in novel RNA processing events. Plant Cell, 1990, 2: 1225–1238
[23]Van Lijsebetens M, Vanderhaeghen R, Van Montagu M. Insertional mutagenesis in Arabidopsis thaliana: isolation of a T-DNA linked mutation that alters leaf morphology. Theor Appl Genet, 1991, 81: 277–284
[24]Stelly D M, Altman D W, Kohel R J, Rangan T S, Commiskey E. Cytogenetic abnormalities of cotton somaclones from callus culture. Genome, 1989, 32: 762–770
[25]Altman D W, Stelly D M, Mitten D M. Quantitative trait variation in phenotypically normal regenerants of cotton. In Vitro Cell Dev Biol, 1991, 27: 132–138
[26]Evans D A, Sharp W R. Single gene mutations in tomato plants regenerated from tissue culture. Science, 1983, 221: 949–951
[27]Gao D-Y(高东迎), Guo S-W(郭士伟), Li X(李霞), Sun L-H(孙立华), Liu A-M(刘蔼民). Somaclonal variation in rice. Chin Bull Bot (植物学通报), 2002, 19(6): 749–951 (in Chinese with English abstract)
[28]Bregilzer P, Halberl S E, Lemaux P G. Somaclonal variation in the progeny of transgenic barley. Theor Appl Genet, 1998, 96: 421–425
[29]Wang S-H(王素会), Du X-M(杜雄明). Advances in researches on molecular biology of two fiber-mutant. Cotton Sci (棉花学报), 2003, 15(6): 376–379 (in Chinese with English abstract)
[30]Song L(宋丽), Guo W-Z(郭旺珍), Qin H-D(秦鸿德), Ding Y-Z(丁业掌), Zhang T-Z(张天真). Genetic analysis and molecular validation of chromosome assignment for fuzzless genes N1 and n2 in cotton. J Nanjing Agric Univ (南京农业大学学报), 2010, 33(1): 21–26 (in Chinese with English abstract)
[1] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[2] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[3] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[4] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
[5] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[6] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[7] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[8] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[9] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[10] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[11] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565.
[12] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[13] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[14] 范凯, 潘鑫峰, 毛志君, 叶方婷, 李兆伟, 林伟伟, 林文雄. 叉柱棉sHSP基因家族的鉴定与特征分析[J]. 作物学报, 2021, 47(10): 1913-1926.
[15] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!