欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (10): 1913-1926.doi: 10.3724/SP.J.1006.2021.04235

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

叉柱棉sHSP基因家族的鉴定与特征分析

范凯(), 潘鑫峰, 毛志君, 叶方婷, 李兆伟, 林伟伟, 林文雄*()   

  1. 福建农林大学农学院作物遗传育种与综合利用教育部重点实验室, 福建福州 350002
  • 收稿日期:2020-10-29 接受日期:2021-03-19 出版日期:2021-10-12 网络出版日期:2021-03-31
  • 通讯作者: 林文雄
  • 作者简介:E-mail: fankai@fafu.edu.cn
  • 基金资助:
    国家自然科学基金项目(31701470);中国博士后科学基金项目(2017M610388);中国博士后科学基金项目(2018T110637);福建农林大学科技创新专项基金(CXZX2020007A);福建农林大学杰出青年科研人才计划项目(xjq201917)

Identification and analysis of sHSP gene family in Gossypioides kirkii

FAN Kai(), PAN Xin-Feng, MAO Zhi-Jun, YE Fang-Ting, LI Zhao-Wei, LIN Wei-Wei, LIN Wen-Xiong*()   

  1. Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fuzhou, China
  • Received:2020-10-29 Accepted:2021-03-19 Published:2021-10-12 Published online:2021-03-31
  • Contact: LIN Wen-Xiong
  • Supported by:
    National Natural Science Foundation of China(31701470);China Postdoctoral Science Foundation(2017M610388);China Postdoctoral Science Foundation(2018T110637);Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University(CXZX2020007A);Outstanding Youth Scientific Fund of Fujian Agriculture and Forestry University(xjq201917)

摘要:

植物小分子热激蛋白(small heat shock protein, sHSP)是植物热激蛋白中一类分子量最小的基因家族, 该家族具有保守的α-晶体结构域, 在响应外界环境胁迫过程中具有重要的作用。叉柱棉(Gossypioides kirkii)有关sHSP家族的鉴定与特征分析还未见相关报道。本研究在叉柱棉中共鉴定了39个GksHSP成员, 并且可以将GksHSP成员进一步分为10个亚家族。在GksHSP家族中发现了7个基因复制事件, 并且所有的基因复制事件都是片段复制事件。棉属特有的全基因组复制事件主要导致了GksHSP成员的扩增, 其扩增还与蛋白激酶家族、线粒体载体蛋白家族以及植物生长素响应蛋白家族有关。此外, GksHSP家族可能与ABA和茉莉酸甲酯调控的胁迫响应相关, 并且GksHSP26成员及其在陆地棉中的同源基因可能在胁迫响应中具有关键的作用。本研究的结果可以进一步为今后叉柱棉和棉花的抗逆育种研究提供一定的理论基础。

关键词: 叉柱棉, sHSP, 鉴定, 扩增, 功能

Abstract:

Small heat shock protein (sHSP) has the lowest molecular weight in heat shock protein and sHSP has the highly conserved α-crystallin domain. The sHSP family is very important in response to various stresses, but the identification and analysis of sHSP gene family in Gossypioides kirkii have not been reported. In this study, we identified 39 GksHSPs with 10 subfamilies in Gossypioides kirkii. There were seven gene duplication events in GksHSP family and all of duplicated gene pairs were involved in segmental duplication events. The cotton-specific whole genome duplication event primarily resulted in the GksHSP expansion. The GksHSP expansion was also related to the protein kinase, mitochondrial carrier protein, and auxin responsive protein. Besides, GksHSP members might respond to various stresses by ABA/MeJA-mediated pathways, and GksHSP26 and its corresponding orthologous genes in Gossypium hirsutum were very important in stress responses. These results could provide the theoretical basis of the breeding of stress tolerance in Gossypioides kirkii and cotton.

Key words: Gossypioides kirkii, sHSP, identification, expansion, function

图1

拟南芥和叉柱棉中sHSP成员的系统发育分析"

表1

本研究中GksHSP成员的鉴定以及结构分析"

名称
Name
位点名称
Locus name
亚家族
Subfamily
蛋白质长度
Protein length (aa)
分子量
Molecular weight (kD)
理论pI
Theoretical pI
α-螺旋
α-helix
延伸链
Extended strand
β-折叠
β-turn
无规则卷曲
Random coil
GksHSP01 Kirkii_Version3_Juiced.00g028900 CP 144 16.32340 4.95 23 30 6 85
GksHSP02 Kirkii_Version3_Juiced.00g047410 CI 159 18.32872 5.98 28 29 11 91
GksHSP03 Kirkii_Version3_Juiced.00g056780 ER 187 21.44579 6.77 64 31 8 84
GksHSP04 Kirkii_Version3_Juiced.00g059950 CI 153 17.69095 5.35 34 28 7 84
GksHSP05 Kirkii_Version3_Juiced.00g085690 CII 159 18.01872 6.64 52 34 8 65
GksHSP06 Kirkii_Version3_Juiced.00g085700 CII 156 17.66154 6.62 53 38 11 54
GksHSP07 Kirkii_Version3_Juiced.00g091700 CI 156 17.91837 5.79 38 30 10 78
GksHSP08 Kirkii_Version3_Juiced.00g091710 CI 156 17.80026 6.18 36 29 9 82
GksHSP09 Kirkii_Version3_Juiced.00g092160 CI 133 14.79902 9.00 40 22 5 66
GksHSP10 Kirkii_Version3_Juiced.00g096000 MTII 246 27.95450 7.80 82 46 13 105
GksHSP11 Kirkii_Version3_Juiced.00g097580 CIII 102 11.37751 4.37 35 16 5 46
GksHSP12 Kirkii_Version3_Juiced.00g101120 CIV 139 15.76492 5.34 28 29 10 72
GksHSP13 Kirkii_Version3_Juiced.00g120690 CI 159 18.25460 6.18 20 34 10 95
GksHSP14 Kirkii_Version3_Juiced.00g120700 CI 159 18.19460 6.18 28 31 10 90
GksHSP15 Kirkii_Version3_Juiced.00g120710 CI 159 18.27965 6.64 29 32 8 90
GksHSP16 Kirkii_Version3_Juiced.00g134580 CIV 139 15.85984 4.61 30 34 6 69
GksHSP17 Kirkii_Version3_Juiced.00g136170 CII 159 18.18400 6.19 49 31 7 72
GksHSP18 Kirkii_Version3_Juiced.00g136180 CII 153 17.05883 8.59 53 40 9 51
GksHSP19 Kirkii_Version3_Juiced.00g184450 CI 156 17.82725 5.77 32 31 10 83
GksHSP20 Kirkii_Version3_Juiced.00g184460 CI 160 18.36475 6.18 39 33 8 80
GksHSP21 Kirkii_Version3_Juiced.00g184750 CI 135 14.96507 5.91 38 33 4 60
GksHSP22 Kirkii_Version3_Juiced.00g188220 CI 143 16.28479 9.22 25 28 7 83
GksHSP23 Kirkii_Version3_Juiced.00g193540 PX 165 18.81639 5.98 18 40 8 99
GksHSP24 Kirkii_Version3_Juiced.00g194110 CII 158 17.75257 5.97 51 34 11 62
GksHSP25 Kirkii_Version3_Juiced.00g209640 CP 232 25.77139 6.84 39 43 8 142
GksHSP26 Kirkii_Version3_Juiced.00g215570 CI 159 18.38593 5.83 30 30 10 89
GksHSP27 Kirkii_Version3_Juiced.00g230720 SINGLE 140 16.28668 5.39 28 26 10 76
GksHSP28 Kirkii_Version3_Juiced.00g244800 CI 163 18.52218 8.83 33 36 10 84
GksHSP29 Kirkii_Version3_Juiced.00g246020 CI 156 17.87539 6.76 27 39 10 80
GksHSP30 Kirkii_Version3_Juiced.00g256930 CI 144 16.53776 5.58 26 34 8 76
GksHSP31 Kirkii_Version3_Juiced.00g267060 CV 166 19.59569 6.33 57 39 17 53
GksHSP32 Kirkii_Version3_Juiced.00g273810 CI 93 10.50390 4.61 11 32 9 41
GksHSP33 Kirkii_Version3_Juiced.00g301400 PX 141 15.98226 6.92 24 36 10 71
GksHSP34 Kirkii_Version3_Juiced.00g331020 CP 230 25.96835 5.86 40 38 9 143
GksHSP35 Kirkii_Version3_Juiced.00g336540 MTI/CP 181 20.93121 6.23 61 35 10 75
GksHSP36 Kirkii_Version3_Juiced.00g336590 MTI/CP 327 36.83181 5.49 103 48 22 154
GksHSP37 Kirkii_Version3_Juiced.00g343620 CI 149 17.03446 7.83 30 35 9 75
GksHSP38 Kirkii_Version3_Juiced.00g375140 ER 184 20.66178 5.76 57 33 8 86
GksHSP39 Kirkii_Version3_Juiced.00g377690 CV 196 22.48230 5.45 44 40 17 95

图2

GksHSP成员的系统发育(左)、保守基序(中)以及基因结构(右)分析"

表2

通过MEME程序识别有关GksHSP成员的基序信息"

基序ID
Motif ID
基序序列
Motif sequence
基序长度
Motif length (aa)
MEME-1 RIDWKETPEAHVFKADVPGLKKEEVKVEVEDDRVLQISGERNVEKEDKNDT 51
MEME-2 NAKMDQIKASMEBGVLTVTVP 21
MEME-3 ERSSGKFMRRFRLPE 15
MEME-4 MAMIPSFFGNRRSSI 15
MEME-5 FDPFSLDVWDPFKDF 15
MEME-6 HVFKADLPGLKKEEVKVEVED 21
MEME-7 KLEVKKPDVKAIEIS 15
MEME-8 SLSTRSPETSAFVNA 15
MEME-9 MLDIPDETEKSPNAPSRAYVRDAKAMAAT 29
MEME-10 MEFPFPSDQHSPLYHYLLPSPPLFSNQLLPENHLNWTQTP 40
MEME-11 QQREGKKKDWRSCNWWEYGYVRRLELPZDADWRKIEAFLSNDVVLEIRIPRN 52
MEME-12 MDFRIMGFDSPLLHT 15
MEME-13 WTNRSYSSYBTSLQLPD 17
MEME-14 VLVIKGERKEE 11
MEME-15 QERAVEKRPKRLAMDVSPFGLLDPLSPMRSMRQMLDTMDRIFEDAMIFPGSNRRQGG 57
MEME-16 DWKETPEA 8
MEME-17 PFSVSFPSKNPCNSRLSVVRAZAAGDNNKDTSVDVHVNKDN 41
MEME-18 GSFYIDPADVPDRVEVLARAA 21
MEME-19 NIQIHVEKGKIMEIFGQ 17
MEME-20 RAPWDIKDGEH 11

图3

GksHSP成员在叉柱棉12条染色体上的分布"

表3

叉柱棉中复制的sHSP成员的Ka和Ks分析"

复制基因1
Duplicated gene 1
复制基因2
Duplicated gene 2
亚家族
Subfamily
非同义
替换率
Ka
同义替换率
Ks
非同义替换率/同义替换率
Ka/Ks
纯化选择
Purifying selection
复制类型
Duplicated type
GksHSP05 GksHSP17 CII 0.063959 0.809673 0.078994 是Yes 片段复制事件
Segmental
GksHSP06 GksHSP18 CII 0.090699 0.742610 0.122136 是Yes 片段复制事件Segmental
GksHSP07 GksHSP20 CI 0.045458 0.629437 0.072220 是Yes 片段复制事件Segmental
GksHSP09 GksHSP21 CI 0.159061 0.715073 0.222441 是Yes 片段复制事件Segmental
GksHSP06 GksHSP24 CII 0.113536 1.039721 0.109199 是Yes 片段复制事件Segmental
GksHSP18 GksHSP24 CII 0.103983 0.730373 0.142370 是Yes 片段复制事件Segmental
GksHSP25 GksHSP34 CP 0.125830 0.606857 0.207347 是Yes 片段复制事件Segmental

图4

GksHSP成员的基因复制事件分析 A: 复制的GksHSP成员分析, 与GksHSP家族有关的复制框使用不同的颜色在染色体上展示。B: 复制事件在不同亚家族的分布。C: 复制的GksHSP同义替换率分布。"

图5

与GksHSP家族有关的复制框分析 A~E: 与GksHSP家族有关的复制框1 (A)、复制框2 (B)、复制框3 (C)、复制框4 (D)和复制框5 (E)的微共线分析。F: 与GksHSP家族有关的5个复制框的基因注释分布。G~I: 与GksHSP家族有关的5个复制框的Ka(G)、Ks(H)和Ka/Ks(I)分析。*表示在P < 0.05水平上差异显著。"

图6

GksHSP成员的启动子区中与胁迫响应相关的顺式调控元件分析 GksHSP亚家族用不用的颜色和字母表示。每一个颜色的方框代表一种顺式调控元件。"

图7

在陆地棉中GksHSP26同源基因的识别和表达分析 A: GksHSP26与其在陆地棉中的同源基因Gh_D08G181200和Gh_A08G183800的氨基酸序列分析。B~C: 在高温、干旱和盐胁迫下Gh_D08G181200 (B)和Gh_A08G183800 (C)的表达分析。"

[1] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000, 5:199-206.
pmid: 10785665
[2] Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci, 2004, 9:236-243.
pmid: 15130549
[3] Pinheiro G L, Marques C S, Costa M D, Reis P A, Alves M S, Carvalho C M, Fietto L G, Fontes E P. Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. Gene, 2009, 444:10-23.
doi: 10.1016/j.gene.2009.05.012
[4] Jacob P, Hirt H, Bendahmane A. The heat-shock protein/ chaperone network and multiple stress resistance. Plant Biotechnol J, 2017, 15:405-414.
doi: 10.1111/pbi.2017.15.issue-4
[5] 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展. 生物技术通报, 2016, 32(2):7-13
Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Research progress on plant heat shock protein. Biotechnol Bull, 2016, 32(2):7-13 (in Chinese with English abstract).
[6] Waters E R, Vierling E. Plant small heat shock proteins-evolutionary and functional diversity. New Phytol, 2020, 227:24-37.
doi: 10.1111/nph.v227.1
[7] Bentley N J, Fitch I T, Tuite M F. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast, 2010, 8:95-106.
doi: 10.1002/(ISSN)1097-0061
[8] Elicker K S, Hutson L D. Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene, 2007, 403:60-69.
doi: 10.1016/j.gene.2007.08.003
[9] Scharf K, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperones, 2001, 6:225-237.
doi: 10.1379/1466-1268(2001)006&lt;0225:TEFOAT&gt;2.0.CO;2
[10] Sarkar N K, Kim Y, Grover A. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics, 2009, 10:393.
doi: 10.1186/1471-2164-10-393
[11] 张宁, 姜晶, 史洁玮. 番茄HSP20基因家族的全基因组鉴定、系统进化及表达分析. 沈阳农业大学学报, 2017, 48(2):137-144.
Zhang N, Jiang J, Shi J W. Genome-wide identification, phyletic evolution and expression analysis of the HSP20 gene family in tomato. J Shenyang Agric Univ, 2017, 48(2):137-144 (in Chinese with English abstract).
[12] Zhao P, Wang D, Wang R, Kong N, Zhang C, Yang C, Wu W, Ma H, Chen Q. Genome-wide analysis of the potato Hsp20 gene family: identification, genomic organization and expression profiles in response to heat stress. BMC Genomics, 2018, 19:61.
doi: 10.1186/s12864-018-4443-1
[13] Ma W, Zhao T, Li J, Liu B, Fang L, Hu Y, Zhang T. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum. Sci Rep, 2016, 6:1-13.
doi: 10.1038/s41598-016-0001-8
[14] 何福林, 张斌. 银杏(Ginkgo biloba) GbHsp20基因家族的鉴定及系统进化分析. 分子植物育种, 2019, 17:7368-7376.
He F L, Zhang B. Identification and phylogenetic analysis of GbHsp20 gene family in Ginkgo biloba L. Mol Plant Breed, 2019, 17:7368-7376 (in Chinese with English abstract).
[15] Li J, Zhang J, Jia H, Yue Z, Lu M, Xin X, Hu J. Genome-wide characterization of the sHsp gene family in Salix suchowensis reveals its functions under different abiotic stresses. Int J Mol Sci, 2018, 19:3246.
doi: 10.3390/ijms19103246
[16] Jung Y J, Nou I S, Kang K K. Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed Biotechnol, 2014, 2:370-379.
doi: 10.9787/PBB.2014.2.4.370
[17] Li Z Y, Long R C, Zhang T J, Yang Q C, Kang J M. Molecular cloning and characterization of the MsHSP17.7 gene from Medicago sativa L. Mol Biol Rep, 2016, 43:815-826.
doi: 10.1007/s11033-016-4008-9
[18] Sun W, Bernard C, Cotte B V D, Montagu M V, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J, 2001, 27:407-415.
pmid: 11576425
[19] Udall J A, Long E, Ramaraj T, Conover J L, Yuan D, Grover C E, Gong L, Arick II M A, Masonbrink R E, Peterson D G, Wendel J F. The genome sequence of Gossypioides kirkii illustrates a descending dysploidy in plants. Front Plant Sci, 2019, 10:1541.
doi: 10.3389/fpls.2019.01541
[20] Elhady S. Isolation and Structural Elucidation of Natural Products from Pentas longiflora Oliver and Gossypioides kirkii (Mast.) Hutch J B. PhD Dissertation of Faculty of Agricultural and Applied Biological Sciences of Ghent University, Ghent, Belgium, 1999.
[21] Wendel J F, Cronn R C. Polyploidy and the evolutionary history of cotton. Adv Agron, 2003, 78:139-186.
[22] Fan K, Mao Z, Zheng J, Chen Y, Li Z, Lin W, Zhang Y, Huang J, Lin W. Molecular evolution and expansion of the KUP family in the allopolyploid cotton species Gossypium hirsutum and Gossypium barbadense. Front Plant Sci, 2020, 11:1501.
[23] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 8:1194-1202.
[24] Muthusamy S K, Dalal M, Chinnusamy V, Bansal K C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol, 2017, 211:100.
doi: 10.1016/j.jplph.2017.01.004
[25] Fan K, Wang M, Miao Y, Ni M, Bibi N, Yuan S, Li F, Wang X. Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. PLoS One, 2014, 9:e111837.
doi: 10.1371/journal.pone.0111837
[26] Li F, Fan K, Ma F, Yue E, Bibi N, Wang M, Shen H, Hasan M M, Wang X. Genomic identification and comparative expansion analysis of the non-specific lipid transfer protein gene family in Gossypium. Sci Rep, 2016, 6:38948.
doi: 10.1038/srep38948
[27] Shan Z, Luo X, Wu M, Wei L, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC Plant Biol, 2020, 20:46.
doi: 10.1186/s12870-020-2242-8
[28] Fan K, Li F, Chen J, Li Z, Lin W, Cai S, Liu J, Lin W. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton. Front Plant Sci, 2018, 9:47.
doi: 10.3389/fpls.2018.00047
[29] Sun H R, Hao P B, Ma Q, Zhang M, Qin Y, Wei H J, Su J J, Wang H T, Gu L J, Wang N H, Liu G Y, Yu S X. Genome-wide identification and expression analyses of the pectate lyase (PEL) gene family in cotton(Gossypium hirsutum L.). BMC Genomics, 2018, 19:661.
doi: 10.1186/s12864-018-5047-5
[30] Wang Y, Wang X, Tang H, Tan X, Ficklin S P, Feltus F A, Paterson A H. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One, 2011, 6:e28150.
doi: 10.1371/journal.pone.0028150
[31] Soltis D E, Visger C J, Marchant D B, Soltis P S. Polyploidy: pitfalls and paths to a paradigm. Am J Bot, 2016, 103:1146-1166.
doi: 10.3732/ajb.1500501
[32] Albalat R, Cañestro C. Evolution by gene loss. Nat Rev Genet, 2016, 17:379.
doi: 10.1038/nrg.2016.39 pmid: 27087500
[33] Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C S, Li Q, Yuan Y L, Lu C R. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44:1098-1103.
doi: 10.1038/ng.2371
[34] Ray S, Agarwal P, Arora R, Kapoor S, Akhilesh K T. Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics, 2007, 278:493-505.
doi: 10.1007/s00438-007-0267-4
[35] Haferkamp I, Schmitz-Esser S. The plant mitochondrial carrier family: functional and evolutionary aspects. Front Plant Sci, 2012, 3:2.
doi: 10.3389/fpls.2012.00002 pmid: 22639632
[36] 朱宇斌, 孔莹莹, 王君晖. 植物生长素响应基因SAUR的研究进展. 生命科学, 2014, 26:407-413.
Zhu Y B, Kong Y Y, Wang J H. Research advances in auxin-responsive SAUR genes. Chin Bull Life Sci, 2014, 26:407-413 (in Chinese with English abstract).
[37] Zhao R, Sun H, Zhao N, Jing X, Shen X, Chen S. The Arabidopsis Ca2+-dependent protein kinase CPK27 is required for plant response to salt-stress. Gene, 2015, 563:203-214.
doi: 10.1016/j.gene.2015.03.024 pmid: 25791495
[38] Valente C, Pasqualim P, Jacomasso T, Maurer J B B, Souza E M D, Martinez G R, Rocha M E M, Carnieri E G S, Cadena S M S C. The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci, 2012, 197:84-91.
doi: 10.1016/j.plantsci.2012.09.007
[39] Guo Y, Jiang Q, Hu Z, Sun X, Zhang H. Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J, 2018, 2:181-190.
[40] 郭晋艳, 郑晓瑜, 邹翠霞, 李秋莉. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展. 生物技术通报, 2011, (4):16-20.
Guo J Y, Zheng X Y, Zou C X, Li Q L. Research progress of cis-elements of abiotic stress inducible promoters and associated transcription factors. Biotechnol Bull, 2011, (4):16-20 (in Chinese with English abstract).
[41] Sewelam N, Kazan K, Meike H, Maurino V G, Schenk P M. The AtHSP17.4C1 gene expression is mediated by diverse signals that link biotic and abiotic stress factors with ROS and can be a useful molecular marker for oxidative stress. Int J Mol Sci, 2019, 20:3201.
doi: 10.3390/ijms20133201
[42] Zou J, Liu C, Liu A, Zou D, Chen X. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol, 2012, 169:628-635.
doi: 10.1016/j.jplph.2011.12.014
[1] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[2] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[3] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[4] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[5] 傅华英, 张婷, 彭文静, 段瑶瑶, 许哲昕, 林艺华, 高三基. 甘蔗新品种(系)苗期白条病人工接种抗性鉴定与评价[J]. 作物学报, 2021, 47(8): 1531-1539.
[6] 苏亚春, 李聪娜, 苏炜华, 尤垂淮, 岑光莉, 张畅, 任永娟, 阙友雄. 甘蔗割手密种类甜蛋白家族鉴定及栽培种同源基因功能分析[J]. 作物学报, 2021, 47(7): 1275-1296.
[7] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[8] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 闫彩霞, 王娟, 赵小波, 宋秀霞, 姜常松, 孙全喜, 苑翠玲, 张浩, 单世华. 全生育期鉴定筛选耐盐碱花生品种[J]. 作物学报, 2021, 47(3): 556-565.
[11] 杨阳, 李淮琳, 胡利民, 范楚川, 周永明. 白菜型油菜srb多室性状的遗传分析与分子鉴定[J]. 作物学报, 2021, 47(3): 385-393.
[12] 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334.
[13] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[14] 张福彦, 程仲杰, 陈晓杰, 王嘉欢, 陈锋, 范家霖, 张建伟, 杨保安. 黄淮麦区小麦粒重基因等位变异的分子鉴定及育种应用[J]. 作物学报, 2021, 47(11): 2091-2098.
[15] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!