欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (02): 360-368.doi: 10.3724/SP.J.1006.2012.00333

• 研究简报 • 上一篇    下一篇

非生物胁迫诱导的GmMYB的克隆与表达分析

孙霞1,**,刘晋跃1,**,袁晓辉1,潘相文1,杜维广2,任海祥2,马永波3,Jun ABE4,邱丽娟5,*,刘宝辉1,*   

  1. 1中国科学院东北地理与农业生态研究所大豆分子育种实验室 / 中国科学院黑土区农业生态院重点实验室, 黑龙江哈尔滨  150081; 2黑龙江省农业科学院牡丹江分院 / 国家大豆改良中心牡丹江试验站, 黑龙江牡丹江 157041; 3辽宁省农业环境保护监测站, 辽宁沈阳 110034; 4日本北海道大学农学院, 日本札幌 060-8589; 5中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2011-06-21 修回日期:2011-10-12 出版日期:2012-02-12 网络出版日期:2011-12-01
  • 通讯作者: 刘宝辉, E-mail:liubh@neigaehrb.ac.cn; 邱丽娟, E-mail:qiu_lijuan@263.net
  • 基金资助:

    本研究由中国科学院“百人计划”(KZCX2-YW-BR-11), 国家自然科学基金项目(30971813和31101170), 黑龙江省杰出青年基金(JC200919), 黑龙江省青年基金(QC2011C015),黑龙江省归国基金(09SRS11), 教育部留学回国人员科研启动基金项目(Y0SQY11001)和所前沿领域项目(2009ZX08009-013B)资助。

Cloning and Expression Analysis of GmMYB Induced by Abiotic Stresses

SUN Xia1,**,LIU Jin-Yue1,**,YUAN Xiao-Hui1,PAN Xiang-Wen1,DU Wei-Guang2,REN Hai-Xiang2,MA Yong-Bo3,Jun ABE 4,QIU Li-Juan5,*,LIU Bao-Hui1,*   

  1. 1 Laboratory of Soybean Molecular Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences / Key Laboratory of Mollisols Agroecology, Chinese Academy of Sciences, Harbin 150081, China; 2 Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157041, China; 3 Liaoning Agricultural Environmental Protection Monitoring Station, Shenyang 110034, China; 4 Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan; 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2011-06-21 Revised:2011-10-12 Published:2012-02-12 Published online:2011-12-01
  • Contact: 刘宝辉, E-mail:liubh@neigaehrb.ac.cn; 邱丽娟, E-mail:qiu_lijuan@263.net

摘要: 本研究室根据一段抗逆的EST序列, 从栽培大豆东农42中克隆到4个开放阅读框均是外显子和内含子间隔构成的R2R3-MYB基因, 其中Gm02g01300Gm03g38040Gm10g01340与已公布的Willams 82基因组序列完全一致, Gm19g40650第375位的单核苷酸突变导致多肽链第125位的氨基酸发生置换(GAG375→GAC375, E125→D125)。以人工气候箱内模拟非生物胁迫(盐、碱、干旱和低温)处理栽培大豆东农42芽期, 选择适宜时间点, 采用荧光定量PCR技术, 检测R2R3-MYB基因的表达。结果表明, 4个基因的表达水平都存在明显波动, 呈诱导后短暂上调或下调两种表达模式, 但表达时间、强度和趋势存在明显差异; Gm02g01300受干旱诱导明显, Gm03g38040受多种胁迫条件诱导表达强烈, 推测这些基因在大豆非生物胁迫的调控中起到重要作用; 另外, 在子叶与胚间, 单个基因的表达也存在差异; 多种非生物胁迫条件下, 基因的表达不仅存在时空差异, 可能也具有调控模式的差异。

关键词: 非生物胁迫, GmMYB, 芽期, 表达分析

Abstract: Response to external environment is the outcome of stress-induced gene expression. In this paper, based on one stress-induced EST sequence, we cloned four R2R3-MYB genes from soybean cultivar Dongnong 42, whose genomic sequences consisted of three exons and two introns. Three of them corresponding to Gm02g1300, Gm03g38040, and Gm10g01340 are respectively consistent with the sequences of Willams 82. A mutation at the 375th single nucleotide in the sequence of Gm19g40650 from Dongnong 42 caused a synonymous amino acid substitution (E125–D125). To test the relationship of four MYB genes with stress resistance, we treated the seedlings of cultivar Dongnong 42 with abiotic stresses including salt, alkali, drought and low temperature in the artificial climate chamber. Quantitative PCR analysis indicated that all of the four genes were transient down-regulated or up-regulated when subjected to the stresses, but different in the expression time, level and tendency. Gm02g01300 was induced by drought stress while Gm03g38040 was strongly induced by multiple stresses, indicating that they play important roles in responding to external stresses. There were also differences in the expression of individual gene between cotyledons and embryos. These results under a variety of abiotic stress conditions suggest that the four R2R3-MYB genes are different not only in the expression patterns, but also in the regulation modes.

Key words: Abiotic stress, GmMYB, Bud period, Expression analysis

[1]Zhang C-Y(张椿雨), Long Y(龙艳), Feng J(冯吉), Meng J-L(孟金陵). Transcriptional regulation of plant genes and its significance in biology. Heredites (遗传), 2007, 29(7): 793-799 (in Chinese with English abstract)
[2]Nakashima K, Yamaguchi-Shinozak K. Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Plant Physiol, 2006, 126: 62-71
[3]Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S, Chen S Y. Soybean GmMYB76, GmMYB92 and GmMYB177 genes confer stress tolerance in transgenic Arabiopsis plants. Cell Res, 2008, 18: 1047-1060
[4]Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol, 2006, 60: 3553-3558
[5]Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and poly cotton. Plant Mol Biol, 2003, 51: 313-325
[6]Li J, Michael T C, Tao J. Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified form rice subspecies indica and japonica genomes. Plant Physiol, 2004, 134: 575-585
[7]Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold E. Maize R2R3-Myb genes: sequence analysis reveals amplification in the higher plants. Genetics, 1999, 153(1): 427-444
[8]Liu L(刘蕾), Du H(杜海), Tang X-F(唐晓凤), Wu Y-M(吴燕民), Huang Y-B(黄玉碧), Tang Y-X(唐益雄). The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Hereditas (遗传), 2008, 30(10): 1265-1271 (in Chinese with English abstract)
[9]Chen B J, Wang Y, Hu Y L, Wu Q, Lin Z P. Cloning and characterization of drought-inducible MYB gene from Boea crassifolia. Plant Sci, 2005, 168: 493-500
[10]Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J, 2004, 37: 115-127
[11]Dai X Y, Xu Y Y, Ma Q B, Xu W Y, Wang T, Xue Y B, Chong K. Overexpression of an R1R2R3-MYB gene, OsMYB3R-2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiol, 2007, 143: 1739-1751
[12]Ma Q B, Dai X Y, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X S, Chong K. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol, 2009, 150: 244-256
[13]Rubio V, Linhares F, Solano R, Martin A C, Iglesias J, Leyva A, Paz-Ares J. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Div, 2001, 15: 2122-2133
[14]Miyake K, Ito T, Sends M. Isolation of a subfamily of genes for R2R3-MYB transcription factors showing up-regulated expression under nitrogen nutrient-limited conditions. Plant Mol Biol, 2003, 53: 237-245
[15]Bender J, Fink G R. A Myb homologue, ATR1, activates tryptophan gene expression in Arabidopsis. Proc Natl Acad Sci USA, 1998, 95: 5655-5660
[16]Kranz H D, Denekamp M, Greco R, Jin H L, Leyva A, Meissner R C, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B. Towards functional characterization of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J, 1998, 16: 263-276
[17]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447-456
[18]Hoeren F U, Dolferus R, Wu Y, Peacock W J, Dennis E S. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics, 1998, 149: 479-490
[19]Yoo J H, Park C Y, Kim J C, Heo W D, Cheong M S, Park H C, Kim M C, Moon B C, Choi M S, Kang Y H. Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem, 2005, 280: 3697-3706
[20]Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weissharr B, Martin C. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J, 2000, 19: 6150-6161
[21]Zhu J, Verslues P E, Zheng X, Lee B H, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong C H, Zhu J K. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA, 2005, 102: 9966-9971
[22]Lea U S, Slimestad R, Smedvig P, Lillo C. Nitrogen deficiency enhances expression of specific MYB and bHLH transcription factors and accumulation of end products in the flavonoid pathway. Planta, 2007, 225: 1245-1253
[23]Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263-1274
[24]Cheong Y H, Chang H S, Gupta R, Wang X, Zhu T, Luan S. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol, 2002, 129: 661-677
[25]Li J, Yang X, Wang Y, Li X, Gao Z, Pei M, Chen Z, Qu L J, Gu H. Two groups of MYB transcription factors share a motif which enhances trans-activation activity. Biochem Biophys Res Commun, 2006, 341: 1155-1163
[26]Raffaele S, Rivas S, Roby D. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett, 2006, 580: 3498-3504
[27]Preston J, Wheeler J, Heazlewood J, Li S F, Parish R W. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J, 2004, 40: 979-995
[28]Celenza J L, Quiel J A, Smolen G A, Merrikh H, Silvestro A R, Normanly J, Bender J. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol, 2005, 137: 253-262
[29]Lippold F, Sanchez D H, Musialak M, Schlereth A, Scheible W R, Hincha D K, Udvardi M K. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiol, 2009, 149: 1761-1772
[30]Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol, 2008, 146: 623-635
[31]Gigolashvili T, Berger B, Mock H P, Müller C, Weisshaar B, Flügge U I. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J, 2007, 50: 886-901
[32]Park M Y, Kang J Y, Kim S Y. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Mol Cells, 2011, 31: 447-454
[33]Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta S L, Tonelli C. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol, 2005, 15: 1196-2000
[34]Liang Y K, Dubos C, Dodd I C, Holroyd G H, Hetherington A M, Campbell M M. AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Curr Biol, 2005, 15: 1201-1206
[35]Feng C P, Andreasson E, Maslak A, Mock H P, Mattsson O, Mundy J. Arabidopsis MYB68 in development and responses to environmental cues. Plant Sci, 2004, 167: 1099-1107
[36]Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng X W. Organ-specific expression of Arabidopsis genome during development. Plant Physiol, 2005, 138: 80-91
[37]Seo P J, Xiang F N, Qiao M, Park J Y, Lee Y N, Kim S G, Lee Y H, Park W J, Park C M. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol, 2009, 151: 275-289
[38]Denekamp M, Smeekens S C. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol, 2003, 132: 1415-1423
[39]Mengiste T, Chen X, Salmeron J, Dietrich R. The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell, 2003, 15: 2551-2565
[40]Hernandez G, Ramirez M, Valdes-Lopez O, Tesfaye M, Graham M A. Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol, 2007, 144: 752-767
[41]Yang W-J(杨文杰), Wu Y-M(吴燕民), Tang Y-X(唐益雄). Expression and functional analysis of GmMYBJ6 from soybean. Heredites (遗传), 2009, 31(6): 645-653 (in Chinese with English abstract)
[42]Liu B H, Watanabe S, Uchiyama T, Kong F J, Kanazawa A, Xia Z J, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 1-13
[43]Kong F J, Liu B H, Xia Z J, Sato S S, Kim B, Watanabe A, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol, 2010, 154: 1-12
[44]Khuri S, Bakker F T, Dunwell J M. Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol, 2001, 18: 593-605
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[7] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[8] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[9] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[10] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[11] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[12] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184.
[15] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!