作物学报 ›› 2012, Vol. 38 ›› Issue (03): 505-513.doi: 10.3724/SP.J.1006.2012.00505
满建民1,蔡灿辉1,严秋香2,胡茂志2,刘巧泉1,*,韦存虚1,*
MAN Jian-Min1,CAI Can-Hui1,YAN Qiu-Xiang2,HU Mao-Zhi2,LIU Qiao-Quan1,*,WEI Cun-Xu1,*
摘要: 傅里叶变换红外光谱技术(FTIR)可用于研究淀粉粒的有序结构,包括透射模式和衰减全反射模式2种。本文探讨不同去卷积设置条件对FTIR波谱的影响,并分析FTIR在淀粉粒有序结构分析中的应用。研究结果表明,不同去卷积设置对FTIR波谱和相关峰强度影响较大,以半峰宽19 cm-1和增强因子1.9的设置对FTIR原始波谱去卷积,获得的结果较好。天然淀粉晶体类型不同,其FTIR波谱有差异,表现在马铃薯和山药淀粉的衰减全反射FTIR波谱相似,与水稻淀粉明显不同;水稻和马铃薯淀粉透射FTIR波谱相似,与山药淀粉明显不同。淀粉中的水分含量影响衰减全反射FTIR波谱,当水分含量超过60%时,对波谱分析结果基本没有影响。酸水解优先降解淀粉粒无定形区的结构成分,提高淀粉粒的有序度。淀粉葡糖苷酶水解淀粉对淀粉粒外部区域的有序度影响不大,但明显提高整个淀粉粒的有序度。不同品质稻米淀粉的衰减全反射FTIR波谱相似。上述研究结果为应用FTIR分析淀粉粒有序结构提供重要的参考作用。
[1]Gallant D J, Bouchet B, Baldwin P M. Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polym, 1997, 32: 177–191[2]Cheetham N W H, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym, 1998, 36: 277–284[3]Wei C X, Qin F L, Zhu L J, Zhou W D, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 1224–1232[4]Atichokudomchai N, Varavinit S, Chinachoti P. A study of ordered structure in acid-modified tapioca starch by 13C CP/MAS solid-state NMR. Carbohydr Polym, 2004, 58: 383–389[5]Sevenou O, Hill S E, Farhat I A, Mitchell J R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int J Biol Macromol, 2002, 31: 79–85[6]Chung H Y, Hoover R, Liu Q. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int J Biol Macromol, 2009, 44: 203–210[7]Rubens P, Snauwaert J, Heremans K, Stute R. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr Polym, 1999, 39: 231–235[8]Li Y(李玥), Zhong F(钟芳), Ma J-G(麻建国), Gu X-H(顾小红). Spectra analysis on rice starches from different varieties during pasting. Acta Polymer Sin (高分子学报), 2008, (7): 720–725 (in Chinese with English abstract)[9]Li J H, Vasanthan T, Hoover R, Rossnagel B G. Starch from hull-less barley: V. In-vitro susceptibility of waxy, normal, and high-amylose starches towards hydrolysis by alpha-amylases and amyloglucosidase. Food Chem, 2004, 84: 621–632[10]Wei C X, Xu B, Qin F L, Yu H G, Chen C, Meng X L, Zhu L J, Wang Y P, Gu M H, Liu Q Q. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 7383–7388[11]Konik-Rose C, Thistleton J, Chanvrier H, Tan I, Halley P, Gidley M, Kosar-Hashemi B, Wang H, Larroque O, Ikea J, McMaugh S, Regina A, Rahman S, Morell M, Li Z. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat. Theor Appl Genet, 2007, 115: 1053–1065[12]Shingel K I. Determination of structural peculiarities of dexran, pullulan and ?-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res, 2002, 337: 1445–1451[13]Smits A L M, Ruhnau F C, Wliegenthart J F G, van Soest J J G. Ageing of starch based systems as observed with FT-IR and solid state NMR spectroscopy. Starch, 1998, 50: 478–483[14]Wei C X, Qin F L, Zhou W D, Yu H G, Xu B, Chen C, Zhu L J, Wang Y P, Gu M H, Liu Q Q. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem, 2010, 58: 11946–11954[15]Wei C X, Qin F L, Zhou W D, Xu B, Chen C, Chen Y F, Wang Y P, Gu M H, Liu Q Q. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its its wild type during heating. Food Chem, 2011, 128: 645–652[16]van Soest J J G, Tournois H, de Wit D, Vliegenthart J F G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res, 1995, 279: 201–214 |
[1] | 袁莉民, 展明飞, 章星传, 王志琴, 杨建昌. 水稻穗上不同粒位籽粒胚乳结构及其结实期灌溉方式对它的调控作用[J]. 作物学报, 2018, 44(02): 245-259. |
[2] | 徐云姬,李银银,钱希旸,王志琴,杨建昌. 三种禾谷类作物强、弱势粒淀粉粒形态与粒度分布的比较[J]. 作物学报, 2016, 42(01): 70-81. |
[3] | 崔丽娜,张红,孟佳佳,石德杨,董树亭. 不同胚乳类型玉米籽粒淀粉粒的粒度分布特征[J]. 作物学报, 2012, 38(09): 1723-1727. |
[4] | 田益华,张传辉,蔡剑,周琴,姜东,戴廷波,荆奇,曹卫星. 小麦籽粒A-型和B-型淀粉粒的理化特性[J]. 作物学报, 2009, 35(9): 1755-1758. |
[5] | 赵法茂,蔡瑞国,毕建杰,肖军,王宪泽. 小麦籽粒淀粉分支酶同种型SBE IIb 的亚细胞定位及遗传多样性[J]. 作物学报, 2009, 35(5): 952-957. |
[6] | 韦存虚;张军;周卫东;陈义芳;许如根. 大麦胚乳小淀粉粒的发育[J]. 作物学报, 2008, 34(10): 1788-1796. |
[7] | 闫素辉;尹燕枰;李文阳;梁太波;李勇;邬云海;王平;耿庆辉;戴忠民;王振林. 灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响[J]. 作物学报, 2008, 34(06): 1092-1096. |
[8] | 戴忠民;尹燕枰;张敏;李文阳;闫素辉;蔡瑞国;王振林. 旱作和灌溉条件下小麦籽粒淀粉粒粒度的分布特征[J]. 作物学报, 2008, 34(05): 795-802. |
[9] | 李文阳;尹燕枰;闫素辉;戴忠民;李勇;梁太波;耿庆辉;王振林. 小麦花后弱光对籽粒淀粉积累和相关酶活性的影响[J]. 作物学报, 2008, 34(04): 632-640. |
[10] | 金文林;濮绍京;赵波;王丽英;吴刚;苏丽丽. 小豆种质资源子粒品质性状的遗传变异[J]. 作物学报, 2006, 32(08): 1223-1230. |
[11] | 韩善华;张红. 豌豆根瘤侵染细胞发育中造粉体的研究[J]. 作物学报, 2003, 29(03): 432-435. |
|