欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1723-1727.doi: 10.3724/SP.J.1006.2012.01723

• 研究简报 • 上一篇    下一篇

不同胚乳类型玉米籽粒淀粉粒的粒度分布特征

崔丽娜1,2,张红1,孟佳佳1,石德杨1,董树亭1,*   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安271018;2 山东德州市农业局,山东德州 253000
  • 收稿日期:2012-01-31 修回日期:2012-06-05 出版日期:2012-09-12 网络出版日期:2012-07-03
  • 通讯作者: 董树亭, E-mail: stdong@sdau.edu.cn
  • 基金资助:

    本研究由国家自然科学基金项目(31171497和30871476), 国家现代农业产业技术体系建设项目(nyhyzx07-003)和国家重点基础研究发展计划(973计划)项目(2011CB100105)资助。

Starch Granule Size Distribution in Grains of Maize with Different Endosperm Types

CUI Li-Na1,2,ZHANG Hai-Yan1,MENG Jia-Jia1,SHI De-Yang1,ZHANG Hong1,DONG Shu-Ting1,*   

  1. 1 Agronomy College of Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Dezhou Agriculture Bureau, Dezhou 253000, China
  • Received:2012-01-31 Revised:2012-06-05 Published:2012-09-12 Published online:2012-07-03
  • Contact: 董树亭, E-mail: stdong@sdau.edu.cn

摘要: 以超甜玉米(华威6号)、爆裂玉米(特爆2号)、糯玉米(西星黄糯6号)及普通玉米(郑单958)为材料,利用激光衍射粒度分析仪及投射电镜,分析其籽粒淀粉粒粒度分布特征。结果表明,玉米淀粉粒体积分布均为三峰曲线。粒径<2 μm淀粉粒所占的体积最小;>15 μm玉米淀粉粒所占体积较大(超甜2~15 μm淀粉粒体积占的比例最大)。淀粉粒平均粒径为糯>爆裂>普通>超甜。单粒重及总淀粉含量与>2 μm的淀粉粒体积百分比显著相关;其他籽粒品质与淀粉粒分布相关性不显著。普通及超甜玉米淀粉粒大多呈圆形,淀粉粒折叠的花纹多,普通玉米淀粉粒排布稀疏,脂滴含量较丰富,超甜淀粉粒分布非常松散,脂滴较少;爆裂玉米淀粉粒相互挤压成长条形或方形,淀粉粒折叠的花纹粗大,数量少,淀粉粒排布非常致密,脂滴含量非常丰富;糯玉米淀粉粒呈圆形或椭圆形,淀粉粒折叠成的花纹浅且少,淀粉粒分布致密,脂滴含量丰富。由扫描图片知,普通、超甜及糯玉米淀粉粒呈球形,普通玉米凹陷的淀粉粒数量少;糯玉米淀粉粒大小均匀,具凹陷的淀粉粒数量大;超甜玉米淀粉粒表面分布了许多网状结构,淀粉粒未见凹陷,淀粉粒及淀粉粒之间的填充物未充满整个细胞;爆裂玉米淀粉粒为多面体,有凹陷的淀粉粒极少。

关键词: 玉米, 淀粉粒, 胚乳

Abstract: Maize (Zea mays L.) kernel dry weight contains about 70% starch. Many studies have focused on the effects of sowing date, variety and nitrogen top-dressing on starch granule distribution in single variety or two varieties. But starch granule size distribution in grains of different endosperm types of maize has not been clear yet. Four maize varieties including super-sweet corn (Huawei 6), popcorn (Tebao 2), waxy corn (Xixinghuangnuo 6) and dent corn (Zhengdan 958) were used to study the starch granule size distribution and the starch granule arrangement in grains by laser diffraction grain size analyzer, transmission electron and scanning electron microscopy. The results showed that distribution of starch granules volume in grains of the maizes were changed in a triple humped curve. The volume proportion of starch granules with diameter lower than 2 μm was the least, while that with diameterhigher than 15 μm was the more (that with diameter from 2 to 15 μm in super-sweet corn grain was the most). The average diameter showed following order: the waxy>the pop>the dent>the super sweet. Correlation analysis indicated that the grain weight and starch content were significantly correlated with the volume percentage of starch granules with diameter higher than 2 μm; while the contents of protein, amino acid, crude fat and test weight had no correlation with volume of starch granule with all size ranges. Transmission electron microscopy showed that the starch granules in grains ofdent and super sweet corn were rotund mostly, with a great deal of drapes. Starch granule arrangement of dent corn was sparse, with abundant lipid droplet, while that of super sweet corn was very sparse; with rich lipid droplet. The starch granule in grains of pop corn was square and oblong, and extruded one another, with thick and skimp drapes, with was highly compact with abundant lipid droplet. The starch granule in grains of way corn was rotund and elliptic, with low and skimp drapes, compact arrangement and abundant lipid droplets. Scanning electron microscopy showed that the starch granules in grains of dent, super sweet and waxy corn were spherical. A small quantity of depressed starch granules were demonstrated in dent corn, while none of depressed starch granules were detected in super sweet corn with reticulate configuration in surface of starch granules. Moreover the cell did not be filled with starch granules and filling agent. The starch granule was polyhedral in pop corn with a very few depressed starch granules.

Key words: Maize (Zea mays L.), Starch granule, Endosperm

[1]Ministry of Agriculture, People’s Republic of China. Standard of the Ministry of Agriculture: High Starch Corn (中华人民共和国农业部.农业部标准: 高淀粉玉米). NY/T 597-2002. Beijing: Standards Press of China, 2002 (in Chinese)

[2]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generation of new corn lines. Carbohyd Polym, 2003, 54: 305–319

[3]Ji Y, Seetharaman K, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Thermal and structure properties of unusual starches from developmental corn lines. Carbohyd Polym, 2003, 51: 439–450

[4]Hou H-X(侯汉学), Dong H-Z(董海洲), Song X-Q(宋晓庆), Zhang H(张慧). Correlations among physicochemical properties of starches from different maize cultivars. J Chin Cereals Oils Assoc (中国粮油学报), 2009, 24(1): 60–64 (in Chinese with English abstract)

[5]Lu D-L(陆大雷), Guo H-F(郭换粉), Dong C(董策), Lu W-P(陆卫平). Starch granule size distribution and thermal properties of waxy maize cultivars in growing seasons. Acta Agron Sin (作物学报), 2010, 36(11): 1998–2003 (in Chinese with English abstract)

[6]Wang Y J, White P, Pollak L, Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem, 1993, 70: 171–179

[7]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohyd Polym, 2003, 54: 305–319

[8]Paterson J L, Hardacre A, Li P, Rao M A. Rheology and granule size distribution of corn starch dispersions from two genotypes and grown in four regions. Food Hydrocolloids, 2001, 15: 453–459

[9]Li J-L(李敬玲), Jia J-L(贾敬鸾), Liu M(刘敏), Zhao S-M(赵世民), Liu Y-N(刘雅楠), Zeng M-Q(曾孟潜), Li S-R(李社荣). Scanning electron microscope observation on endosperm starch grain characters in multiplasmic maize. Acta Genet Sin (遗传学报), 1999, 26(3): 249–253 (in Chinese) 

[10]Knutson C A, Khoo U, Cluskey J E, Inglett G E. Variation in enzyme digestibility and gelatinization behavior of corn starch granule fractions. Cereal Chem, 1982, 59: 512–515

[11]Wu J(吴俊), Xie S-H(谢守和). Effect of particle size of corn starch on its gelatinization behavior. J Chin Cereals Oils Assoc (中国粮油学报), 2006, 21(1): 51–54 (in Chinese with English abstract)

[12]Sheng Y-P(盛玉萍), Huang Q-C(黄其椿), Wu Z-K(吴子恺), Zhou Q(周琼). Studies on microstructure of aleurone cell in micro-endosperm maizes. Guihaia (广西植物), 2004, 28(2): 179–182 (in Chinese)

[13]Peng M, Gao M, Abdel-Aal E S M, Hucl P, Chibbar R N. Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375–379

[14]Malouf R B, Hoseney R C. Wheat hardness: I. A method to measure endosperm tensile strength using tablets made from flour. Cereal Chem, 1992, 69: 164–168

[15]Lu D-L(陆大雷), Guo H-F(郭换粉), Lu W-P(陆卫平). Effects of sowing date, variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize. Sci Agric Sin (中国农业科学), 2011, 44(2): 263–270 (in Chinese with English abstract)

[16]Kaur A, Singh N, Ezekiel R, Guraya H S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem, 2007, 101: 643–651

[17]Bechtel D B, Zeyas I, Kaleikau L, Pomeranz Y. Size-distribution of wheat starch granules during endosperm development. Cereal Chem, 1990, 67: 59–63

[18]Bechtel D B, Zeyas I, Dempster R, Wilson J D. Size-distribution of starch granules isolated from hard red winter and soft winter wheat. Cereal Chem, 1993, 70: 238–240

[19]Wilson J D, Bechtel D B, Todd T C, Seib P A. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem, 2006, 83: 259–268

[20]Zhang L(张丽), Zhang J-W(张吉旺), Liu P(刘鹏), Dong S-T(董树亭). Starch granule size distribution in grains of maize with different starch contents. Sci Agric Sin (中国农业科学), 2011, 44(8): 1596–1602 (in Chinese with English abstract)

[21]Sandhu K S, Singh N, Kaur M. Characteristics of the different corn types and their grain fractions: physicochemical, thermal, morphological, and rheological properties of starches. J Food Eng, 2004, 64: 119–127

[22]Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison T M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289–311

[23]Li Y-L(李玉玲). Effect of normal corn pollen burst of maize grain and burst characteristics. Chin Agric Sci Bull (中国农学通报), 1999, 15(6): 24–26 (in Chinese)

[24]Liu P(刘鹏), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Zhang B-R(张保仁). Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corns. Sci Agric Sin (中国农业科学), 2005, 38(1): 52–58 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303.
[14] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[15] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!