作物学报 ›› 2012, Vol. 38 ›› Issue (09): 1723-1727.doi: 10.3724/SP.J.1006.2012.01723
崔丽娜1,2,张红1,孟佳佳1,石德杨1,董树亭1,*
CUI Li-Na1,2,ZHANG Hai-Yan1,MENG Jia-Jia1,SHI De-Yang1,ZHANG Hong1,DONG Shu-Ting1,*
摘要: 以超甜玉米(华威6号)、爆裂玉米(特爆2号)、糯玉米(西星黄糯6号)及普通玉米(郑单958)为材料,利用激光衍射粒度分析仪及投射电镜,分析其籽粒淀粉粒粒度分布特征。结果表明,玉米淀粉粒体积分布均为三峰曲线。粒径<2 μm淀粉粒所占的体积最小;>15 μm玉米淀粉粒所占体积较大(超甜2~15 μm淀粉粒体积占的比例最大)。淀粉粒平均粒径为糯>爆裂>普通>超甜。单粒重及总淀粉含量与>2 μm的淀粉粒体积百分比显著相关;其他籽粒品质与淀粉粒分布相关性不显著。普通及超甜玉米淀粉粒大多呈圆形,淀粉粒折叠的花纹多,普通玉米淀粉粒排布稀疏,脂滴含量较丰富,超甜淀粉粒分布非常松散,脂滴较少;爆裂玉米淀粉粒相互挤压成长条形或方形,淀粉粒折叠的花纹粗大,数量少,淀粉粒排布非常致密,脂滴含量非常丰富;糯玉米淀粉粒呈圆形或椭圆形,淀粉粒折叠成的花纹浅且少,淀粉粒分布致密,脂滴含量丰富。由扫描图片知,普通、超甜及糯玉米淀粉粒呈球形,普通玉米凹陷的淀粉粒数量少;糯玉米淀粉粒大小均匀,具凹陷的淀粉粒数量大;超甜玉米淀粉粒表面分布了许多网状结构,淀粉粒未见凹陷,淀粉粒及淀粉粒之间的填充物未充满整个细胞;爆裂玉米淀粉粒为多面体,有凹陷的淀粉粒极少。
[1]Ministry of Agriculture, People’s Republic of China. Standard of the Ministry of Agriculture: High Starch Corn (中华人民共和国农业部.农业部标准: 高淀粉玉米). NY/T 597-2002. Beijing: Standards Press of China, 2002 (in Chinese)[2]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generation of new corn lines. Carbohyd Polym, 2003, 54: 305–319[3]Ji Y, Seetharaman K, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Thermal and structure properties of unusual starches from developmental corn lines. Carbohyd Polym, 2003, 51: 439–450[4]Hou H-X(侯汉学), Dong H-Z(董海洲), Song X-Q(宋晓庆), Zhang H(张慧). Correlations among physicochemical properties of starches from different maize cultivars. J Chin Cereals Oils Assoc (中国粮油学报), 2009, 24(1): 60–64 (in Chinese with English abstract)[5]Lu D-L(陆大雷), Guo H-F(郭换粉), Dong C(董策), Lu W-P(陆卫平). Starch granule size distribution and thermal properties of waxy maize cultivars in growing seasons. Acta Agron Sin (作物学报), 2010, 36(11): 1998–2003 (in Chinese with English abstract)[6]Wang Y J, White P, Pollak L, Jane J. Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line background. Cereal Chem, 1993, 70: 171–179[7]Ji Y, Wong K, Hasjim J, Pollak L M, Duvick S, Jane J, White P J. Structure and function of starch from advanced generations of new corn lines. Carbohyd Polym, 2003, 54: 305–319[8]Paterson J L, Hardacre A, Li P, Rao M A. Rheology and granule size distribution of corn starch dispersions from two genotypes and grown in four regions. Food Hydrocolloids, 2001, 15: 453–459[9]Li J-L(李敬玲), Jia J-L(贾敬鸾), Liu M(刘敏), Zhao S-M(赵世民), Liu Y-N(刘雅楠), Zeng M-Q(曾孟潜), Li S-R(李社荣). Scanning electron microscope observation on endosperm starch grain characters in multiplasmic maize. Acta Genet Sin (遗传学报), 1999, 26(3): 249–253 (in Chinese) [10]Knutson C A, Khoo U, Cluskey J E, Inglett G E. Variation in enzyme digestibility and gelatinization behavior of corn starch granule fractions. Cereal Chem, 1982, 59: 512–515[11]Wu J(吴俊), Xie S-H(谢守和). Effect of particle size of corn starch on its gelatinization behavior. J Chin Cereals Oils Assoc (中国粮油学报), 2006, 21(1): 51–54 (in Chinese with English abstract) [12]Sheng Y-P(盛玉萍), Huang Q-C(黄其椿), Wu Z-K(吴子恺), Zhou Q(周琼). Studies on microstructure of aleurone cell in micro-endosperm maizes. Guihaia (广西植物), 2004, 28(2): 179–182 (in Chinese)[13]Peng M, Gao M, Abdel-Aal E S M, Hucl P, Chibbar R N. Separation and characterization of A-and B-type starch granules in wheat endosperm. Cereal Chem, 1999, 76: 375–379[14]Malouf R B, Hoseney R C. Wheat hardness: I. A method to measure endosperm tensile strength using tablets made from flour. Cereal Chem, 1992, 69: 164–168[15]Lu D-L(陆大雷), Guo H-F(郭换粉), Lu W-P(陆卫平). Effects of sowing date, variety and nitrogen top-dressing at jointing stage on starch granule size distribution of waxy maize. Sci Agric Sin (中国农业科学), 2011, 44(2): 263–270 (in Chinese with English abstract)[16]Kaur A, Singh N, Ezekiel R, Guraya H S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem, 2007, 101: 643–651[17]Bechtel D B, Zeyas I, Kaleikau L, Pomeranz Y. Size-distribution of wheat starch granules during endosperm development. Cereal Chem, 1990, 67: 59–63[18]Bechtel D B, Zeyas I, Dempster R, Wilson J D. Size-distribution of starch granules isolated from hard red winter and soft winter wheat. Cereal Chem, 1993, 70: 238–240[19]Wilson J D, Bechtel D B, Todd T C, Seib P A. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem, 2006, 83: 259–268[20]Zhang L(张丽), Zhang J-W(张吉旺), Liu P(刘鹏), Dong S-T(董树亭). Starch granule size distribution in grains of maize with different starch contents. Sci Agric Sin (中国农业科学), 2011, 44(8): 1596–1602 (in Chinese with English abstract)[21]Sandhu K S, Singh N, Kaur M. Characteristics of the different corn types and their grain fractions: physicochemical, thermal, morphological, and rheological properties of starches. J Food Eng, 2004, 64: 119–127[22]Ellis R P, Cochrane M P, Dale M F B, Duffus C M, Lynn A, Morrison T M, Prentice R D M, Swanston J S, Tiller S A. Starch production and industrial use. J Sci Food Agric, 1998, 77: 289–311[23]Li Y-L(李玉玲). Effect of normal corn pollen burst of maize grain and burst characteristics. Chin Agric Sci Bull (中国农学通报), 1999, 15(6): 24–26 (in Chinese) [24]Liu P(刘鹏), Hu C-H(胡昌浩), Dong S-T(董树亭), Wang K-J(王空军), Zhang J-W(张吉旺), Zhang B-R(张保仁). Comparison of enzymes activity associated with sucrose metabolism in the developing grains between sweet corn and normal corns. Sci Agric Sin (中国农业科学), 2005, 38(1): 52–58 (in Chinese with English abstract) |
[1] | 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311. |
[2] | 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536. |
[7] | 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070. |
[8] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[9] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[10] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[11] | 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579. |
[12] | 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. |
[13] | 杨谨, 白爱宁, 白雪, 陈娟, 郭林, 刘春明. 水稻胚胎和胚乳双缺陷突变体eed1的表型与遗传分析[J]. 作物学报, 2022, 48(2): 292-303. |
[14] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[15] | 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192. |
|