作物学报 ›› 2012, Vol. 38 ›› Issue (06): 996-1002.doi: 10.3724/SP.J.1006.2012.00996
李锁平1,2,张大乐2,王秀娥1,亓增军1,刘大钧1,*
LI Suo-Ping1,2,ZHANG Da-Le2,WANG Xiu-E1,QI Zeng-Jun1,LIU Da-Jun1,*
摘要: 人工合成的双二倍体在遗传和植物育种中有重要作用。为探讨远缘杂交后代双二倍体育性提高及其细胞学稳定的分子机制,利用ALFP、MASP技术对节节麦-黑麦杂种及其双二倍体S1~S4代的基因组变异进行了分析。该双二倍的S1~S4代体细胞染色体数2n = 28的植株的比例从57.1%提高到92.5%,2n = 28的植株的花粉母细胞减数分裂中期二价体平均数目从11.7提高到12.25,平均结实率从24.5%提高到51.3%。利用两套分别扩增重复序列和单拷贝序列的酶切引物组合EcoR I/Mse I (E-M)、Pst I/Mse I (P-M)对节节麦–黑麦杂种F1和双二倍体S1~S4代扩增表明,基因组序列变异主要发生于F1代,且以序列消除为主。E-M和P-M引物扩增带中, 节节麦基因组在F1代的序列消除带数占各代总消失带数的70.00%和52.95%,而在黑麦基因组为96.88%和81.64%。MSAP分析表明节节麦和黑麦杂种和加倍能够导致节节麦和黑麦基因组序列甲基化状态改变,以甲基化为主,仅发生在F1和S1代。在S2~S4代中没有检测到甲基化变异。
[1]Masterson J. Stomatal size in fossil plants: evidence for polyploidy in the majority of angiosperms. Science, 1994, 264: 421–424[2]Wendel J F. Genome evolution in polyploidy. Plant Mol Biol, 2000, 42: 225–249[3]Guyot R, Keller B. Ancestral genome duplication in rice. Genome, 2004, 47: 610–614[4]Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809–6814[5]Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R. Genome duplication in soybean (Glycine subgenus soja). Genetics, 1996, 144: 329–338[6]Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114–2117[7]Arabidopsis genome initiative: analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796–815[8]Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci USA, 1995, 92: 7719–7723[9]Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735–1747[10]Comai L, Yyagi A P, Winter K. Phenotypical instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell, 2000, 12: 1551–1567[11]Madlung A, Masuelli R W, Watson B, Reynolds S H, Davison J, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol, 2002, 129: 733–746[12]Liu B, Brubaker C L, Mergeai G, Cronn R C, Wendel J F. Polyploid formation in cotton is not accompanied by rapid genome changes. Genome, 2001, 44: 321–330[13]Baumel A, Ainouche M L, Kalendar J E, Schulman A H. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae). Mol Biol Evol, 2002, 19: 1218–1227[14]Axelsson T, Bowman C M, Sharpe A G, Lydiate D J, Lagercrantz U. Amphidiploid Brassica juncea contains conserved progenitor genomes, Genome, 2000, 43: 679–688[15]Wilson A S. Wheat and rye hybrids. Edinburgh Bat Sac Trans, 1876, 12: 286–288[16]Ma X F, Fang P, Gustafson J P. Polyploidization-induced genome variation in triticale. Genome, 2004, 47: 839–848[17]Ma X F, Gustafson J P. Timing and rate of genome variation in Triticale following allpolyploidization. Genome, 2006, 49: 950–985[18]Doyle J J, Doyle J L. A rapid DNA isolation procedure from small quantities of fresh leaf tissue. Phytochem Bull, 1987, 19: 11–15[19]Feldman M, Liu B, Segal G, Abbo S, Levy A A, Vega J M. Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381–1387[20]Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: II. Changes in low-copy coding DNA sequences. Genome, 1998, 41: 535–542[21]Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001, 13: 1749–1759[22]Liu B, Vega J M, Segal G, Abbo S, Rodova M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops: I. Changes in low-copy noncoding DNA sequences. Genome, 1998, 41: 271–277[23]Liu B, Hu B, Dong Y Z, Liu Z L, He M Y. Speciation-induced heritable cytosine methylation changes in ployploid wheat. Prog Nat Sci, 2000, 10: 601–606[24]Bao W-K(鲍文奎). Challenge and risk: thoughts on 40 years’ research of crop breeding. Plants (植物杂志), 1990, 17(4): 4–5 (in Chinese)[25]Zhang X-Y(张学勇), Li D-Y(李大勇). Repetitive DNA sequences in wheat and its relatives. Sci Agric Sin (中国农业科学), 2000, 33(5): 1–7 (in Chinese with English abstract) |
[1] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[2] | 卢海, 李增强, 唐美琼, 罗登杰, 曹珊, 岳娇, 胡亚丽, 黄震, 陈涛, 陈鹏. 红麻DNA甲基化响应镉胁迫及甲基化差异基因的表达分析[J]. 作物学报, 2021, 47(12): 2324-2334. |
[3] | 李庆成,黄磊,李亚洲,范超兰,谢蝶,赵来宾,张舒洁,陈雪姣,甯顺腙,袁中伟,张连全,刘登才,郝明. 小麦-黑麦6RS/6AL易位染色体的遗传稳定性及其在配子中的传递[J]. 作物学报, 2020, 46(4): 513-519. |
[4] | 李丽娜,杜培,付留洋,刘华,徐静,秦利,严玫,韩锁义,黄冰艳,董文召. 花生栽培种与野生种(Arachis oteroi)人工杂交双二倍体的创制和鉴定[J]. 作物学报, 2017, 43(01): 133-140. |
[5] | 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142. |
[6] | 柴建芳*,王海波*,马秀英,张翠绵,董福双. ω-黑麦碱基因沉默对小麦1B/1R易位系加工品质的影响[J]. 作物学报, 2016, 42(05): 627-632. |
[7] | 李韬*,郑飞,秦胜男,李磊,顾世梁. 小麦–黑麦易位系T1BL•1RS在小麦品种中的分布及其与小麦赤霉病抗性的关联[J]. 作物学报, 2016, 42(03): 320-329. |
[8] | 周艳华,曹红利,岳川,王璐,郝心愿,王新超*,杨亚军*. 冷驯化不同阶段茶树DNA甲基化模式的变化[J]. 作物学报, 2015, 41(07): 1047-1055. |
[9] | 赵晓萌,刘婧娜,易丽霞,朱波,代红翠,胡跃高,曾昭海. 绿肥还田对双季稻根际土壤产甲烷古菌群落结构的影响[J]. 作物学报, 2015, 41(05): 698-707. |
[10] | 昝逢刚,吴才文,陈学宽,赵培方,赵俊,刘家勇*. 118份甘蔗种质资源遗传多样性的AFLP分析[J]. 作物学报, 2014, 40(10): 1877-1883. |
[11] | 罗巧玲,郑琪,许云峰,李立会,韩方普,许红星,李滨,马朋涛,安调过. 390份小麦-黑麦种质材料主要农艺性状分析及优异材料的GISH与FISH鉴定[J]. 作物学报, 2014, 40(08): 1331-1339. |
[12] | 逯晓萍,刘丹丹,王树彦,米福贵,韩平安,吕二锁. 高丹草遗传效应与杂种表现预测模型[J]. 作物学报, 2014, 40(03): 466-475. |
[13] | 赵志刚,富贵,邓昌蓉,杜德志. 人工合成甘蓝型油菜早期世代基因组变异的AFLP和MSAP标记研究[J]. 作物学报, 2013, 39(07): 1231-1239. |
[14] | 吴绍华,张红宇,薛晶晶,徐培洲,吴先军. 双胚苗水稻来源的单倍体、二倍体及其杂交F1的DNA甲基化位点分析[J]. 作物学报, 2013, 39(01): 50-59. |
[15] | 唐海明,汤文光,肖小平,罗尊长,张帆,汪柯,杨光立. 冬种黑麦草对6种水稻土重金属含量及晚稻不同器官重金属累积与分配的影响[J]. 作物学报, 2012, 38(06): 1121-1126. |
|