作物学报 ›› 2012, Vol. 38 ›› Issue (10): 1752-1759.doi: 10.3724/SP.J.1006.2012.01752
黄冰艳1,2,张新友2,*,苗利娟2,高伟2,韩锁义2,董文召2,汤丰收2,刘志勇1,*
HUANG Bing-Yan1,2,ZHANG Xin-You2,*,MIAO Li-Juan2,GAO Wei2,HAN Suo-Yi2,DONG Wen-Zhao2,TANG Feng-Shou2,LIU Zhi-Yong1,*
摘要:
花生ahFAD2A是控制种子油酸、亚油酸含量和油亚比的关键基因。利用ahFAD2A基因特异引物检测远杂9102, 豫花9416等52个花生品种的ahFAD2A基因等位变异, 并比较其中13个品种的ahFAD2A基因序列。结果表明, 花生ahFAD2A基因存在G-A两种单核苷酸等位变异(野生型ahFAD2A-wt和突变体ahFAD2A-m), DNA序列比对结果证实, 豫花9416等10个品种(突变体)与远杂9102、延津花籽和开农白2号(野生型)相比, 在ahFAD2A基因的448 bp处存在核苷酸G-A突变。应用real-time PCR检测ahFAD2A等位基因在种子不同发育时期的表达动态显示突变体豫花9416等位基因(ahFAD2A-m)在种子发育中期表达量稍高, 种子发育后期表达量下降速度较野生型远杂9102(ahFAD2A-wt)更快。进一步测定豫花9416和远杂9102在种子不同发育时期的油酸、亚油酸积累和油亚比动态, 发现两品种间存在明显差异, 豫花9416在籽粒发育前期油酸相对含量已超过亚油酸, 油亚比大于1并逐渐增加, 而远杂9102到籽粒发育中后期油酸相对含量才高于亚油酸, 油亚比逐渐接近于1左右。
[1]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11[2]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502[3]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91:15–21[4]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138[5]Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001, 41: 51–56[6]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805[7]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811[8]Chen Z, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548[9]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036[10]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the minicore of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378[11]Lei Y(雷永), Jiang H-F(姜慧芳), Wen Q-G(文奇根), Huang J-Q(黄家权), Yan L-Y(晏立英), Liao B-S(廖伯寿). Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin (作物学报), 2010, 36(11): 1864−1869 (in Chinese with English abstract)[12]Wang M L, Sukumaran S, Barkley N A, Chen Z, Chen C Y, Guo B, Pittman R N, Stalker H T, Holbrook C C, Pederson G A, Yu J. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet, 2011, 123: 1307–1317[13]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to Asparagine. Crop Sci, 2001, 41: 522–526[14]Yu S-L(禹山林), Isleib T G. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(1): 34–37 (in Chinese with English abstract)[15]Han Z-Q(韩柱强), Gao G-Q(高国庆), Zhou R-Y(周瑞阳), Tang R-H (唐荣华), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), He L-Q(贺梁琼). Inheritance of oleic, linoleic acid content and O /L ratio in high oleic acid Arachis hypogaea L. var. hirsuta. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 17–22 (in Chinese with English abstract)[16]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci (中国油料作物学报) , 2008, 30(3): 294–299 (in Chinese with English abstract)[17]Ding J-P(丁锦平), Han Z-Q(韩柱强) , Zhou R-Y(周瑞阳), Gao G-Q(高国庆), Yang Y-P(杨玉萍). Genetic analysis of oleic / linoleic (O/L) ratio in peanut. Chin J Oil Crop Sci (中国油料作物学报) , 2007, 29(3): 233–237 (in Chinese with English abstract)[18]Yan H, Yuan W, Velculescu V E, Vogelstein B, Kinzler K W. Allelic variation in human gene expression. Science, 2002, 297: 1143[19]Lo S H, Wang Z, Hu Y, Yang H H, Gere S, Buetow K H, Lee M P. Allelic variation in gene expression is common in the human genome. Genome Res, 2003, 13: 1855–1862[20]Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16: 1707–1716[21]Mikkilineni V, Rocheford T R. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet, 2003, 106: 1326–1332[22]Belo A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genom, 2008, 279: 1–10[23]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190[24]Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genom, 2008, 35: 679–685 |
[1] | 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[4] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[5] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[6] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[7] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[8] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[9] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[10] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[11] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[12] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[13] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[14] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[15] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
|