作物学报 ›› 2013, Vol. 39 ›› Issue (02): 269-279.doi: 10.3724/SP.J.1006.2013.00269
李余良,刘建华,郑锦荣,胡建广*
LI Yu-Liang, LIU Jian-Hua,ZHENG Jin-Rong,HU Jian-Guang*
摘要:
利用数字化基因表达谱技术, 对高温胁迫下优良甜玉米杂交种粤甜13雌穗发育相关基因的表达谱进行分析。结果表明, 在高温胁迫和适温下差异表达基因达949个, 其中有上调表达基因705个, 下调表达基因244个, 上调表达10倍以上的基因108个, 下调表达10倍以上的基因40个。对差异表达基因功能注释分析表明, 它们主要集中在细胞内组分和膜上, 主要具催化活性、结合活性、水解酶活性、氧化还原酶活性等, 参与代谢、细胞结构与功能、胁迫应答、物质运输和生物调节等生物学过程, 推测对雌穗发育过程中籽粒和果穗的形成具有重要作用。这些基因中有一半以上的基因功能未知, 下一步将对其开展克隆和功能方面的分析。
[1]Hallauer A R. Specialty Corns, 2nd edn. Boca Raton, Florida: CRC Press, 2001. pp 162–179[2]Nordine C, Robert J J. Disruption of maize kernel growth and development by heat stress. Plant Physiol, 1994, 106: 45–51[3]Wang M-L(王曼玲), Rocha P, Li L-Y(李落叶), Xu M-L(徐孟亮), Din C, Xia X-J(夏新界). Analysis of differential expression of rice genes in response to heat stress by microarray. Biotechnol Bull (生物技术通报), 2009, (10): 92–97 (in Chinese with English abstract)[4]Muthappa S K, Ganesh K, Venkatachalayya S, Makarla U. Assessment of variability in acquired thermotolerance: potential option to study genotypic response and the relevance of stress genes. J Plant Physiol, 2007, 164: 111–125[5]Dong Y S, Fatma K, Kil J L, Charles L. Acquired tolerance to temperature extremes. Plant Sci, 2003, 8: 179–187[6]Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257: 967–971[7]Wang X J, Cao H H, Zhang D F, Li B, He Y, Li J S, Wang S C. Relationship between differential gene expression and heterosis during ear development in maize (Zea mays L.). J Genet Genomics, 2007, 34(2): 160–170[8]Li B(李波), Zhang D-F(张登峰), Jia G-Q(贾冠清), Zhang T-F(张体付), Dai J-R(戴景瑞), Wang S-C(王守才). Gene expression profile and main function genes during ear development in a highly heterotic hybrid of maize. Acta Agron Sin (作物学报), 2009, 35(5): 768–777 (in Chinese with English abstract) [9]Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbreds. Proc Natl Acad Sci USA, 2006, 103: 6805–6810[10]Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol, 2007, 63: 381–391 [11]Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Res, 1997, 7: 986–995[12]Ansorge W J. Next-generation DNA sequencing techniques. N Biotechnol, 2009, 25: 195–203[13]Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001, 29: 1165–1188[14]Bennett S. Solexa Ltd. Pharmacogenomics, 2004, 5: 433–438[15]Freedman R B, Hirst T R, Tuite M F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci, 1994, 19: 331–336[16]He L(何亮), Li F-H(李富华), Sha L-N(沙莉娜), Fu F-L(付凤玲), Li W-C(李晚忱). Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agron Sin (作物学报), 2008, 34(5): 899−903 (in Chinese with English abstract)[17]White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487–511[18]Bilyeu K D, Cole J L, Laskey J G, Riekhof W R, Esparza T J, Kramer M D, Morris R O. Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol, 2001, 125: 378–386[19]Baudino S, Hansen S, Brettschneider R, Hecht V F, Dresselhaus T, Lorz H, Dumas C, Rogowsky P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta, 2001, 213: 1–10[20]Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol, 1999, 41: 577–585[21]Blein J P, Coutos-Thevenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defence mechanisms. Trends Plant Sci, 2002, 7: 293–296[22]Han B-D(韩宝达), Li L-X(李立新). Seed storage proteins and their intracellular transport and processing. Chin Bull Bot (植物学报), 2010, 45(4): 492–505 (in Chinese with English abstract)[23]Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol, 2001, 125: 1206–1215[24]Huang Y F, Jordan W R, Wing R A, Morgan P W. Gene expression induced by physical impedance in maize roots. Plant Mol Biol, 1998, 37: 921–930[25]Liu Y-S (刘彦随), Liu Y(刘玉), Guo L-Y(郭丽英). Impact of climatic change on agricultural production and response strategies in China. Chin J Eco-Agric (中国生态农业学报), 2010, 18(4): 905–910 (in Chinese with English abstract)[26]Donson J, Fang Y, Espiritu-Santo G, Xing W, Salazar A, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol, 2002, 48: 75–97[27]Zhang Y, Mian M A R, Chekhovskiy K, So S, Kupfer D, Lai H S, Roe B A. Differential gene expression in Festuca under heat stress conditions. J Exp Bot, 2005, 56: 897–907[28]Duggan D J, Bittner M, Chen Y, Meltzer P, Trent J M. Expression profiling using cDNA microarrays. Nat Genet, 1999, 21: 10–14[29]Eveland A L, Satoh-Nagasawa N, Goldshmidt A, Jackson D. Digital gene expression signatures for maize development. Plant Physiol, 2010, 154: 1024–1039[30]Hao Q N, Zhou X A, Sha A H, Wang C, Zhou R, Chen S L. Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics, 2011, 12: 525[31]Mardis E R. The impact of next-generation sequencing technology on genetics. Trends Genet, 2008, 24: 133–141[32]Ekman D R, Lorenz W W, Przybyla A E, Wolfe N L, Dean J F. SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2,4,6-trinitrotoluene. Plant Physiol, 2003, 133: 1397–1406 |
[1] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[2] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[3] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[4] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[5] | 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214. |
[6] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[7] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[8] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[9] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[10] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[11] | 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289. |
[12] | 颜晓军, 叶德练, 苏达, 李芳, 郑朝元, 吴良泉. 磷肥用量对甜玉米磷素吸收利用的影响[J]. 作物学报, 2021, 47(1): 169-176. |
[13] | 刘震宇,王桂霞,李丽楠,蔡泽洲,梁潘潘,吴莘玲,张祥,陈德华. 高温胁迫终止后Bt棉蕾杀虫蛋白的恢复特征及相关生理机制[J]. 作物学报, 2020, 46(3): 440-447. |
[14] | 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516. |
[15] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
|